🚀 addy88/eli5-all-mpnet-base-v2 句子相似度模型
這是一個sentence-transformers模型,它可以將句子和段落映射到一個768維的密集向量空間,可用於聚類或語義搜索等任務。該模型在ELI5數據集上進行了微調。
🚀 快速開始
本模型可通過兩種方式使用,分別是藉助 sentence-transformers
庫和直接使用 HuggingFace Transformers
庫。下面為你詳細介紹這兩種使用方法。
📦 安裝指南
若要使用 sentence-transformers
庫,你需要先安裝它:
pip install -U sentence-transformers
💻 使用示例
基礎用法(Sentence-Transformers)
當你安裝了 sentence-transformers 庫後,使用該模型會變得非常簡單:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('addy88/eli5-all-mpnet-base-v2')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(HuggingFace Transformers)
如果你沒有安裝 sentence-transformers 庫,也可以使用該模型。首先,你需要將輸入數據傳入 Transformer 模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('addy88/eli5-all-mpnet-base-v2')
model = AutoModel.from_pretrained('addy88/eli5-all-mpnet-base-v2')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
評估結果
若要對該模型進行自動評估,請參考 Sentence Embeddings Benchmark:https://seb.sbert.net
訓練信息
該模型的訓練參數如下:
數據加載器
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,長度為 14393,參數如下:
{'batch_size': 16}
損失函數
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,參數如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit() 方法的參數
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 1439,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用與作者
該模型由 sentence-transformers 團隊訓練。
如果你覺得這個模型很有用,請引用我們的論文 Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "http://arxiv.org/abs/1908.10084",
}