🚀 juridics/bertimbaulaw-base-portuguese-sts-scale
juridics/bertimbaulaw-base-portuguese-sts-scale是一個句子轉換器模型,它可以將句子和段落映射到768維的密集向量空間,可用於聚類或語義搜索等任務。
🚀 快速開始
本模型可通過兩種方式使用,分別是藉助sentence-transformers
庫和HuggingFace Transformers
庫,下面為你詳細介紹使用步驟。
📦 安裝指南
若要使用sentence-transformers
庫,你需要先安裝它:
pip install -U sentence-transformers
💻 使用示例
基礎用法(使用sentence-transformers
庫)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('juridics/bertimbaulaw-base-portuguese-sts-scale')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(使用HuggingFace Transformers
庫)
若不使用sentence-transformers
庫,你可以按以下步驟使用模型:首先,將輸入數據傳入Transformer模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('juridics/bertimbaulaw-base-portuguese-sts-scale')
model = AutoModel.from_pretrained('juridics/bertimbaulaw-base-portuguese-sts-scale')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
評估結果
若要對該模型進行自動評估,請參考句子嵌入基準測試:https://seb.sbert.net
訓練信息
該模型的訓練參數如下:
數據加載器
torch.utils.data.dataloader.DataLoader
,長度為2492,參數如下:
{'batch_size': 8, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
損失函數
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
fit()
方法的參數
{
"epochs": 3,
"evaluation_steps": 2492,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 5e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 748,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用與作者
如果使用了本模型的相關工作,請按以下格式進行引用:
@incollection{Viegas_2023,
doi = {10.1007/978-3-031-36805-9_24},
url = {https://doi.org/10.1007%2F978-3-031-36805-9_24},
year = 2023,
publisher = {Springer Nature Switzerland},
pages = {349--365},
author = {Charles F. O. Viegas and Bruno C. Costa and Renato P. Ishii},
title = {{JurisBERT}: A New Approach that~Converts a~Classification Corpus into~an~{STS} One},
booktitle = {Computational Science and Its Applications {\textendash} {ICCSA} 2023}
}