🚀 tavakolih/all-MiniLM-L6-v2-pubmed-full
這是一個句子轉換器模型,它可以將句子和段落映射到384維的密集向量空間,可用於聚類或語義搜索等任務。
🚀 快速開始
當你安裝了句子轉換器後,使用這個模型會變得很容易。
📦 安裝指南
pip install -U sentence-transformers
💻 使用示例
基礎用法
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('tavakolih/all-MiniLM-L6-v2-pubmed-full')
embeddings = model.encode(sentences)
print(embeddings)
📚 詳細文檔
評估結果
要對這個模型進行自動評估,請參考 句子嵌入基準測試:https://seb.sbert.net
訓練情況
該模型使用以下參數進行訓練:
數據加載器:
torch.utils.data.dataloader.DataLoader
,長度為221,參數如下:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
損失函數:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,參數如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit()
方法的參數:
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 10000,
"weight_decay": 0.01
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Normalize()
)
引用與作者
屬性 |
詳情 |
管道標籤 |
句子相似度 |
標籤 |
句子轉換器、特徵提取、句子相似度 |
數據集 |
pubmed |