Legal BERTimbau Sts Base Ma V2
模型概述
模型特點
模型能力
使用案例
🚀 rufimelo/Legal-BERTimbau-sts-base-ma
這是一個 sentence-transformers 模型,它能將句子和段落映射到一個 768 維的密集向量空間,可用於聚類或語義搜索等任務。rufimelo/rufimelo/Legal-BERTimbau-sts-base-ma 基於 Legal-BERTimbau-base,而後者源自 BERTimbau 大模型。該模型適用於葡萄牙語法律領域,並在葡萄牙語數據集上針對語義文本相似度(STS)進行了訓練。
🚀 快速開始
安裝依賴
使用此模型,你需要安裝 sentence-transformers:
pip install -U sentence-transformers
運行示例代碼
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
embeddings = model.encode(sentences)
print(embeddings)
✨ 主要特性
- 向量映射:能夠將句子和段落映射到 768 維的密集向量空間。
- 多任務適用:可用於聚類、語義搜索等任務。
- 領域適配:針對葡萄牙語法律領域進行了適配。
- 多數據集訓練:在多個葡萄牙語數據集上進行了訓練。
📦 安裝指南
若要使用該模型,需安裝 sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基礎用法(Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(HuggingFace Transformers)
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
評估結果 STS
模型 | Assin | Assin2 | stsb_multi_mt pt | 平均 |
---|---|---|---|---|
Legal-BERTimbau-sts-base | 0.71457 | 0.73545 | 0.72383 | 0.72462 |
Legal-BERTimbau-sts-base-ma | 0.74874 | 0.79532 | 0.82254 | 0.78886 |
Legal-BERTimbau-sts-base-ma-v2 | 0.75481 | 0.80262 | 0.82178 | 0.79307 |
Legal-BERTimbau-base-TSDAE-sts | 0.78814 | 0.81380 | 0.75777 | 0.78657 |
Legal-BERTimbau-sts-large | 0.76629 | 0.82357 | 0.79120 | 0.79369 |
Legal-BERTimbau-sts-large-v2 | 0.76299 | 0.81121 | 0.81726 | 0.79715 |
Legal-BERTimbau-sts-large-ma | 0.76195 | 0.81622 | 0.82608 | 0.80142 |
Legal-BERTimbau-sts-large-ma-v2 | 0.7836 | 0.8462 | 0.8261 | 0.81863 |
Legal-BERTimbau-sts-large-ma-v3 | 0.7749 | 0.8470 | 0.8364 | 0.81943 |
Legal-BERTimbau-large-v2-sts | 0.71665 | 0.80106 | 0.73724 | 0.75165 |
Legal-BERTimbau-large-TSDAE-sts | 0.72376 | 0.79261 | 0.73635 | 0.75090 |
Legal-BERTimbau-large-TSDAE-sts-v2 | 0.81326 | 0.83130 | 0.786314 | 0.81029 |
Legal-BERTimbau-large-TSDAE-sts-v3 | 0.80703 | 0.82270 | 0.77638 | 0.80204 |
---------------------------------------- | ---------- | ---------- | ---------- | ---------- |
BERTimbau base Fine-tuned for STS | 0.78455 | 0.80626 | 0.82841 | 0.80640 |
BERTimbau large Fine-tuned for STS | 0.78193 | 0.81758 | 0.83784 | 0.81245 |
---------------------------------------- | ---------- | ---------- | ---------- | ---------- |
paraphrase-multilingual-mpnet-base-v2 | 0.71457 | 0.79831 | 0.83999 | 0.78429 |
paraphrase-multilingual-mpnet-base-v2 Fine-tuned with assin(s) | 0.77641 | 0.79831 | 0.84575 | 0.80682 |
訓練過程
rufimelo/Legal-BERTimbau-sts-base-ma-v2 基於 Legal-BERTimbau-base,而後者源自 BERTimbau 基礎模型。
首先,由於葡萄牙語數據集的缺乏,該模型採用多語言知識蒸餾進行訓練。在多語言知識蒸餾過程中,教師模型為 'sentence-transformers/paraphrase-xlm-r-multilingual-v1',假定支持的語言為英語,要學習的語言為葡萄牙語。
該模型針對語義文本相似度進行了訓練,並在 assin、assin2 和 stsb_multi_mt pt 數據集上進行了微調。
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
引用與作者
如果你使用了此工作,請引用以下文獻:
@inproceedings{souza2020bertimbau,
author = {F{\'a}bio Souza and
Rodrigo Nogueira and
Roberto Lotufo},
title = {{BERT}imbau: pretrained {BERT} models for {B}razilian {P}ortuguese},
booktitle = {9th Brazilian Conference on Intelligent Systems, {BRACIS}, Rio Grande do Sul, Brazil, October 20-23 (to appear)},
year = {2020}
}
@inproceedings{fonseca2016assin,
title={ASSIN: Avaliacao de similaridade semantica e inferencia textual},
author={Fonseca, E and Santos, L and Criscuolo, Marcelo and Aluisio, S},
booktitle={Computational Processing of the Portuguese Language-12th International Conference, Tomar, Portugal},
pages={13--15},
year={2016}
}
@inproceedings{real2020assin,
title={The assin 2 shared task: a quick overview},
author={Real, Livy and Fonseca, Erick and Oliveira, Hugo Goncalo},
booktitle={International Conference on Computational Processing of the Portuguese Language},
pages={406--412},
year={2020},
organization={Springer}
}
@InProceedings{huggingface:dataset:stsb_multi_mt,
title = {Machine translated multilingual STS benchmark dataset.},
author={Philip May},
year={2021},
url={https://github.com/PhilipMay/stsb-multi-mt}
}
🔧 技術細節
數據集
屬性 | 詳情 |
---|---|
模型類型 | 基於 Sentence-Transformers 的模型 |
訓練數據 | assin、assin2、stsb_multi_mt、rufimelo/PortugueseLegalSentences-v0 |
訓練方法
- 多語言知識蒸餾:由於葡萄牙語數據集的缺乏,使用多語言知識蒸餾進行訓練,教師模型為 'sentence-transformers/paraphrase-xlm-r-multilingual-v1'。
- 微調:在多個葡萄牙語數據集上進行微調,以適應語義文本相似度任務。
模型架構
模型基於 SentenceTransformer 構建,包含 Transformer 層和 Pooling 層,具體架構如下:
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
)
評估指標
使用 Pearson 相關性作為評估指標,在多個數據集上進行評估,以衡量模型在語義文本相似度任務上的性能。
代碼實現
在代碼實現中,使用了 Sentence-Transformers 和 HuggingFace Transformers 庫,通過簡單的代碼即可加載和使用模型,具體示例如下:
from sentence_transformers import SentenceTransformer
sentences = ["Isto é um exemplo", "Isto é um outro exemplo"]
model = SentenceTransformer('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
embeddings = model.encode(sentences)
print(embeddings)
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
model = AutoModel.from_pretrained('rufimelo/Legal-BERTimbau-sts-base-ma-v2')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)







