🚀 TamilSBERT-STS
這是一個在STS數據集上微調的TamilSBERT模型(l3cube-pune/tamil-sentence-bert-nli)。
作為MahaNLP項目的一部分發布:https://github.com/l3cube-pune/MarathiNLP
支持主要印度語言和跨語言句子相似度的該模型的多語言版本可在此處獲取 indic-sentence-similarity-sbert
關於數據集、模型和基線結果的更多詳細信息可在我們的[論文] (https://arxiv.org/abs/2304.11434) 中找到。
🚀 快速開始
模型信息
屬性 |
詳情 |
模型類型 |
基於STS數據集微調的TamilSBERT模型 |
相關項目 |
MahaNLP:https://github.com/l3cube-pune/MarathiNLP |
多語言版本 |
indic-sentence-similarity-sbert |
論文鏈接 |
[論文] (https://arxiv.org/abs/2304.11434) |
引用信息
@article{deode2023l3cube,
title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
journal={arXiv preprint arXiv:2304.11434},
year={2023}
}
@article{joshi2022l3cubemahasbert,
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
journal={arXiv preprint arXiv:2211.11187},
year={2022}
}
其他相關模型
- 單語言相似度模型:
- 單語言印度語句子BERT模型:
📦 安裝指南
如果你安裝了 sentence-transformers,使用該模型會很容易:
pip install -U sentence-transformers
💻 使用示例
基礎用法(Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(HuggingFace Transformers)
在沒有安裝 sentence-transformers 的情況下,你可以這樣使用該模型:首先,將輸入傳遞給transformer模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📄 許可證
本模型採用CC BY 4.0許可證。