🚀 GujaratiSBERT-STS
這是一個在STS數據集上微調的古吉拉特語SBERT模型(l3cube-pune/gujarati-sentence-bert-nli)。
作為MahaNLP項目的一部分發布:https://github.com/l3cube-pune/MarathiNLP
一個支持主要印度語言和跨語言句子相似度的該模型多語言版本可在此處獲取 indic-sentence-similarity-sbert
關於數據集、模型和基線結果的更多詳細信息可在我們的 [論文] (https://arxiv.org/abs/2304.11434) 中找到。
🚀 快速開始
安裝依賴
使用此模型,你需要安裝 sentence-transformers:
pip install -U sentence-transformers
使用示例
基礎用法(Sentence-Transformers)
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(HuggingFace Transformers)
如果你沒有安裝 sentence-transformers,可以按以下方式使用該模型:首先,將輸入傳遞給transformer模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
模型信息
屬性 |
詳情 |
模型類型 |
古吉拉特語SBERT模型(l3cube-pune/gujarati-sentence-bert-nli)微調版 |
訓練數據 |
STS數據集 |
相關論文
@article{deode2023l3cube,
title={L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT},
author={Deode, Samruddhi and Gadre, Janhavi and Kajale, Aditi and Joshi, Ananya and Joshi, Raviraj},
journal={arXiv preprint arXiv:2304.11434},
year={2023}
}
@article{joshi2022l3cubemahasbert,
title={L3Cube-MahaSBERT and HindSBERT: Sentence BERT Models and Benchmarking BERT Sentence Representations for Hindi and Marathi},
author={Joshi, Ananya and Kajale, Aditi and Gadre, Janhavi and Deode, Samruddhi and Joshi, Raviraj},
journal={arXiv preprint arXiv:2211.11187},
year={2022}
}
其他單語言相似度模型
其他單語言印度語句子BERT模型
📄 許可證
本模型採用CC BY 4.0許可證。