🚀 日本語Sentence - LUKE模型
這是一個用於日語的Sentence - LUKE模型。它與日語Sentence - BERT模型在同一數據集和設置下進行訓練。在內部的私有數據集上,與日語Sentence - BERT模型相比,該模型的定量精度相當或高出約0.5個百分點,定性精度則更高。
本模型使用了預訓練模型studio - ousia/luke - japanese - base - lite。推理時需要安裝SentencePiece(pip install sentencepiece
)。
✨ 主要特性
- 基於日語數據訓練,適用於日語句子處理。
- 與日語Sentence - BERT模型相比,在精度上有一定提升。
📦 安裝指南
推理的執行需要安裝SentencePiece,可使用以下命令進行安裝:
pip install sentencepiece
💻 使用示例
基礎用法
from transformers import MLukeTokenizer, LukeModel
import torch
class SentenceLukeJapanese:
def __init__(self, model_name_or_path, device=None):
self.tokenizer = MLukeTokenizer.from_pretrained(model_name_or_path)
self.model = LukeModel.from_pretrained(model_name_or_path)
self.model.eval()
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.device = torch.device(device)
self.model.to(device)
def _mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
@torch.no_grad()
def encode(self, sentences, batch_size=8):
all_embeddings = []
iterator = range(0, len(sentences), batch_size)
for batch_idx in iterator:
batch = sentences[batch_idx:batch_idx + batch_size]
encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest",
truncation=True, return_tensors="pt").to(self.device)
model_output = self.model(**encoded_input)
sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu')
all_embeddings.extend(sentence_embeddings)
return torch.stack(all_embeddings)
MODEL_NAME = "sonoisa/sentence-luke-japanese-base-lite"
model = SentenceLukeJapanese(MODEL_NAME)
sentences = ["暴走したAI", "暴走した人工知能"]
sentence_embeddings = model.encode(sentences, batch_size=8)
print("Sentence embeddings:", sentence_embeddings)
📄 許可證
本項目採用Apache 2.0許可證。