🚀 說話人分割模型
本模型主要用於音頻中的說話人分割任務,可實現語音活動檢測、重疊語音檢測和重新分割等功能,為音頻處理和分析提供了強大的支持。
🚀 快速開始
如果你計劃在生產環境中使用此開源模型,建議考慮切換到 pyannoteAI,以獲得更好更快的選擇。
✨ 主要特性
- 多任務支持:可進行語音活動檢測、重疊語音檢測和重新分割等任務。
- 可視化示例:提供了示例圖片展示分割效果。
- 可復現研究:提供了論文結果復現所需的超參數。
📦 安裝指南
本模型依賴於 pyannote.audio 2.1.1,具體安裝說明請參考 安裝指南。
💻 使用示例
基礎用法
from pyannote.audio import Model
model = Model.from_pretrained("pyannote/segmentation",
use_auth_token="ACCESS_TOKEN_GOES_HERE")
語音活動檢測
from pyannote.audio.pipelines import VoiceActivityDetection
pipeline = VoiceActivityDetection(segmentation=model)
HYPER_PARAMETERS = {
"onset": 0.5, "offset": 0.5,
"min_duration_on": 0.0,
"min_duration_off": 0.0
}
pipeline.instantiate(HYPER_PARAMETERS)
vad = pipeline("audio.wav")
重疊語音檢測
from pyannote.audio.pipelines import OverlappedSpeechDetection
pipeline = OverlappedSpeechDetection(segmentation=model)
pipeline.instantiate(HYPER_PARAMETERS)
osd = pipeline("audio.wav")
重新分割
from pyannote.audio.pipelines import Resegmentation
pipeline = Resegmentation(segmentation=model,
diarization="baseline")
pipeline.instantiate(HYPER_PARAMETERS)
resegmented_baseline = pipeline({"audio": "audio.wav", "baseline": baseline})
原始分數
from pyannote.audio import Inference
inference = Inference(model)
segmentation = inference("audio.wav")
📚 詳細文檔
📄 許可證
本項目採用 MIT 許可證。
🔗 引用信息
@inproceedings{Bredin2021,
Title = {{End-to-end speaker segmentation for overlap-aware resegmentation}},
Author = {{Bredin}, Herv{\'e} and {Laurent}, Antoine},
Booktitle = {Proc. Interspeech 2021},
Address = {Brno, Czech Republic},
Month = {August},
Year = {2021},
}
@inproceedings{Bredin2020,
Title = {{pyannote.audio: neural building blocks for speaker diarization}},
Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe},
Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing},
Address = {Barcelona, Spain},
Month = {May},
Year = {2020},
}
🔍 可復現研究
為了復現論文 "End-to-end speaker segmentation for overlap-aware resegmentation" 的結果,請使用 pyannote/segmentation@Interspeech2021
並配合以下超參數:
語音活動檢測
數據集 |
onset |
offset |
min_duration_on |
min_duration_off |
AMI Mix-Headset |
0.684 |
0.577 |
0.181 |
0.037 |
DIHARD3 |
0.767 |
0.377 |
0.136 |
0.067 |
VoxConverse |
0.767 |
0.713 |
0.182 |
0.501 |
重疊語音檢測
數據集 |
onset |
offset |
min_duration_on |
min_duration_off |
AMI Mix-Headset |
0.448 |
0.362 |
0.116 |
0.187 |
DIHARD3 |
0.430 |
0.320 |
0.091 |
0.144 |
VoxConverse |
0.587 |
0.426 |
0.337 |
0.112 |
VBx 重新分割
數據集 |
onset |
offset |
min_duration_on |
min_duration_off |
AMI Mix-Headset |
0.542 |
0.527 |
0.044 |
0.705 |
DIHARD3 |
0.592 |
0.489 |
0.163 |
0.182 |
VoxConverse |
0.537 |
0.724 |
0.410 |
0.563 |
預期輸出(和 VBx 基線)也在 /reproducible_research
子目錄中提供。