Ola Video
O
Ola Video
由THUdyh開發
Ola-7B是由騰訊、清華大學和南洋理工大學聯合開發的多模態語言模型,基於Qwen2.5架構,支持文本、圖像、視頻和音頻輸入,輸出文本內容。
下載量 82
發布時間 : 2/20/2025
模型概述
Ola-7B是一種按需解決方案,能夠無縫高效地處理任意空間尺寸和時間長度的視覺輸入,支持32K tokens的上下文窗口。
模型特點
多模態輸入支持
能夠同時接收圖像/視頻、文本和音頻作為輸入,並輸出文本內容。
長上下文窗口
支持32K tokens的上下文窗口,適合處理長文本和多輪對話。
高效視覺處理
能夠無縫高效地處理任意空間尺寸和時間長度的視覺輸入。
模型能力
文本生成
圖像分析
視頻理解
語音識別
多模態推理
使用案例
多媒體內容理解
視頻內容描述
分析視頻內容並生成詳細的文本描述。
多模態問答
基於圖像/視頻和音頻輸入的複雜問答任務。
智能助手
多模態對話
支持結合視覺和語音輸入的智能對話系統。
🚀 Ola-7B
Ola-7B 模型由來自騰訊、清華大學和南洋理工大學的人員聯合開發。它基於 Qwen2.5 語言模型,在文本、圖像、視頻和音頻數據上進行訓練,上下文窗口可達 32K 個標記。該模型能夠接受圖像、視頻、文本和音頻作為輸入,並輸出文本。Ola 提供了一種按需解決方案,可無縫高效地處理任意空間大小和時間長度的視覺輸入。
🚀 快速開始
模型使用步驟
- 從 https://huggingface.co/THUdyh/Ola_speech_encoders 下載語音編碼器。
- 將
config.json
中的路徑替換為語音編碼器的本地路徑。
我們提供了一個簡單的模型生成流程,更多詳細信息請參考我們的 Github 倉庫。
💻 使用示例
基礎用法
import os
os.environ['LOWRES_RESIZE'] = '384x32'
os.environ['HIGHRES_BASE'] = '0x32'
os.environ['VIDEO_RESIZE'] = "0x64"
os.environ['VIDEO_MAXRES'] = "480"
os.environ['VIDEO_MINRES'] = "288"
os.environ['MAXRES'] = '1536'
os.environ['MINRES'] = '0'
os.environ['REGIONAL_POOL'] = '2x'
os.environ['FORCE_NO_DOWNSAMPLE'] = '1'
os.environ['LOAD_VISION_EARLY'] = '1'
os.environ['SKIP_LOAD_VIT'] = '1'
import gradio as gr
import torch
import re
from decord import VideoReader, cpu
from PIL import Image
import numpy as np
import transformers
import moviepy.editor as mp
from typing import Dict, Optional, Sequence, List
import librosa
import whisper
from ola.conversation import conv_templates, SeparatorStyle
from ola.model.builder import load_pretrained_model
from ola.utils import disable_torch_init
from ola.datasets.preprocess import tokenizer_image_token, tokenizer_speech_image_token, tokenizer_speech_question_image_token
from ola.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, process_anyres_video, process_anyres_highres_image_genli
from ola.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, DEFAULT_SPEECH_TOKEN
model_path = ""
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None)
model = model.to('cuda').eval()
model = model.bfloat16()
USE_SPEECH=False
cur_dir = os.path.dirname(os.path.abspath(__file__))
def load_audio(audio_file_name):
speech_wav, samplerate = librosa.load(audio_file_name, sr=16000)
if len(speech_wav.shape) > 1:
speech_wav = speech_wav[:, 0]
speech_wav = speech_wav.astype(np.float32)
CHUNK_LIM = 480000
SAMPLE_RATE = 16000
speechs = []
speech_wavs = []
if len(speech_wav) <= CHUNK_LIM:
speech = whisper.pad_or_trim(speech_wav)
speech_wav = whisper.pad_or_trim(speech_wav)
speechs.append(speech)
speech_wavs.append(torch.from_numpy(speech_wav).unsqueeze(0))
else:
for i in range(0, len(speech_wav), CHUNK_LIM):
chunk = speech_wav[i : i + CHUNK_LIM]
if len(chunk) < CHUNK_LIM:
chunk = whisper.pad_or_trim(chunk)
speechs.append(chunk)
speech_wavs.append(torch.from_numpy(chunk).unsqueeze(0))
mels = []
for chunk in speechs:
chunk = whisper.log_mel_spectrogram(chunk, n_mels=128).permute(1, 0).unsqueeze(0)
mels.append(chunk)
mels = torch.cat(mels, dim=0)
speech_wavs = torch.cat(speech_wavs, dim=0)
if mels.shape[0] > 25:
mels = mels[:25]
speech_wavs = speech_wavs[:25]
speech_length = torch.LongTensor([mels.shape[1]] * mels.shape[0])
speech_chunks = torch.LongTensor([mels.shape[0]])
return mels, speech_length, speech_chunks, speech_wavs
def extract_audio(videos_file_path):
my_clip = mp.VideoFileClip(videos_file_path)
return my_clip.audio
def ola_inference(multimodal, audio_path):
visual, text = multimodal["files"][0], multimodal["text"]
if visual.endswith("image2.png"):
modality = "video"
visual = f"{cur_dir}/case/case1.mp4"
if visual.endswith(".mp4"):
modality = "video"
else:
modality = "image"
# input audio and video, do not parse audio in the video, else parse audio in the video
if audio_path:
USE_SPEECH = True
elif modality == "video":
USE_SPEECH = True
else:
USE_SPEECH = False
speechs = []
speech_lengths = []
speech_wavs = []
speech_chunks = []
if modality == "video":
vr = VideoReader(visual, ctx=cpu(0))
total_frame_num = len(vr)
fps = round(vr.get_avg_fps())
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, 64, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
spare_frames = vr.get_batch(frame_idx).asnumpy()
video = [Image.fromarray(frame) for frame in spare_frames]
else:
image = [Image.open(visual)]
image_sizes = [image[0].size]
if USE_SPEECH and audio_path:
audio_path = audio_path
speech, speech_length, speech_chunk, speech_wav = load_audio(audio_path)
speechs.append(speech.bfloat16().to('cuda'))
speech_lengths.append(speech_length.to('cuda'))
speech_chunks.append(speech_chunk.to('cuda'))
speech_wavs.append(speech_wav.to('cuda'))
print('load audio')
elif USE_SPEECH and not audio_path:
# parse audio in the video
audio = extract_audio(visual)
audio.write_audiofile("./video_audio.wav")
video_audio_path = './video_audio.wav'
speech, speech_length, speech_chunk, speech_wav = load_audio(video_audio_path)
speechs.append(speech.bfloat16().to('cuda'))
speech_lengths.append(speech_length.to('cuda'))
speech_chunks.append(speech_chunk.to('cuda'))
speech_wavs.append(speech_wav.to('cuda'))
else:
speechs = [torch.zeros(1, 3000, 128).bfloat16().to('cuda')]
speech_lengths = [torch.LongTensor([3000]).to('cuda')]
speech_wavs = [torch.zeros([1, 480000]).to('cuda')]
speech_chunks = [torch.LongTensor([1]).to('cuda')]
conv_mode = "qwen_1_5"
if text:
qs = text
else:
qs = ''
if USE_SPEECH and audio_path:
qs = DEFAULT_IMAGE_TOKEN + "\n" + "User's question in speech: " + DEFAULT_SPEECH_TOKEN + '\n'
elif USE_SPEECH:
qs = DEFAULT_SPEECH_TOKEN + DEFAULT_IMAGE_TOKEN + "\n" + qs
else:
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
if USE_SPEECH and audio_path:
input_ids = tokenizer_speech_question_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
elif USE_SPEECH:
input_ids = tokenizer_speech_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
else:
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
if modality == "video":
video_processed = []
for idx, frame in enumerate(video):
image_processor.do_resize = False
image_processor.do_center_crop = False
frame = process_anyres_video(frame, image_processor)
if frame_idx is not None and idx in frame_idx:
video_processed.append(frame.unsqueeze(0))
elif frame_idx is None:
video_processed.append(frame.unsqueeze(0))
if frame_idx is None:
frame_idx = np.arange(0, len(video_processed), dtype=int).tolist()
video_processed = torch.cat(video_processed, dim=0).bfloat16().to("cuda")
video_processed = (video_processed, video_processed)
video_data = (video_processed, (384, 384), "video")
else:
image_processor.do_resize = False
image_processor.do_center_crop = False
image_tensor, image_highres_tensor = [], []
for visual in image:
image_tensor_, image_highres_tensor_ = process_anyres_highres_image_genli(visual, image_processor)
image_tensor.append(image_tensor_)
image_highres_tensor.append(image_highres_tensor_)
if all(x.shape == image_tensor[0].shape for x in image_tensor):
image_tensor = torch.stack(image_tensor, dim=0)
if all(x.shape == image_highres_tensor[0].shape for x in image_highres_tensor):
image_highres_tensor = torch.stack(image_highres_tensor, dim=0)
if type(image_tensor) is list:
image_tensor = [_image.bfloat16().to("cuda") for _image in image_tensor]
else:
image_tensor = image_tensor.bfloat16().to("cuda")
if type(image_highres_tensor) is list:
image_highres_tensor = [_image.bfloat16().to("cuda") for _image in image_highres_tensor]
else:
image_highres_tensor = image_highres_tensor.bfloat16().to("cuda")
pad_token_ids = 151643
attention_masks = input_ids.ne(pad_token_ids).long().to('cuda')
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
gen_kwargs = {}
if "max_new_tokens" not in gen_kwargs:
gen_kwargs["max_new_tokens"] = 1024
if "temperature" not in gen_kwargs:
gen_kwargs["temperature"] = 0.2
if "top_p" not in gen_kwargs:
gen_kwargs["top_p"] = None
if "num_beams" not in gen_kwargs:
gen_kwargs["num_beams"] = 1
with torch.inference_mode():
if modality == "video":
output_ids = model.generate(
inputs=input_ids,
images=video_data[0][0],
images_highres=video_data[0][1],
modalities=video_data[2],
speech=speechs,
speech_lengths=speech_lengths,
speech_chunks=speech_chunks,
speech_wav=speech_wavs,
attention_mask=attention_masks,
use_cache=True,
stopping_criteria=[stopping_criteria],
do_sample=True if gen_kwargs["temperature"] > 0 else False,
temperature=gen_kwargs["temperature"],
top_p=gen_kwargs["top_p"],
num_beams=gen_kwargs["num_beams"],
max_new_tokens=gen_kwargs["max_new_tokens"],
)
else:
output_ids = model.generate(
inputs=input_ids,
images=image_tensor,
images_highres=image_highres_tensor,
image_sizes=image_sizes,
modalities=['image'],
speech=speechs,
speech_lengths=speech_lengths,
speech_chunks=speech_chunks,
speech_wav=speech_wavs,
attention_mask=attention_masks,
use_cache=True,
stopping_criteria=[stopping_criteria],
do_sample=True if gen_kwargs["temperature"] > 0 else False,
temperature=gen_kwargs["temperature"],
top_p=gen_kwargs["top_p"],
num_beams=gen_kwargs["num_beams"],
max_new_tokens=gen_kwargs["max_new_tokens"],
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
return outputs, None
🔧 技術細節
模型架構
- 架構:預訓練的 Oryx-ViT + Qwen2.5-7B
- 數據:超過 500 萬的圖像、視頻和音頻數據的混合,分 3 個階段進行訓練。
- 精度:BFloat16
硬件與軟件
- 硬件:64 * NVIDIA Tesla A100
- 編排:HuggingFace Trainer
- 代碼:Pytorch
📄 許可證
本模型採用 Apache-2.0 許可證。
📚 引用
@article{liu2025ola,
title={Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment},
author={Liu, Zuyan and Dong, Yuhao and Wang, Jiahui and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming},
journal={arXiv preprint arXiv:2502.04328},
year={2025}
}
📦 模型信息
屬性 | 詳情 |
---|---|
模型類型 | 多模態語言模型 |
支持語言 | 英文、中文 |
訓練數據集 | HuggingFaceFV/finevideo |
基礎模型 | Qwen/Qwen2.5-7B-Instruct |
倉庫地址 | https://github.com/Ola-Omni/Ola |
論文地址 | https://huggingface.co/papers/2502.04328 |
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98