🚀 Ties merged COde MAth aNd Reasoning model
This project is a merged pre - trained language model created using mergekit. It combines the code and math capabilities by merging multiple Qwen 3 finetunes, aiming to provide more powerful reasoning and thinking abilities.
🚀 Quick Start
📦 Installation
This model uses the transformers
library. You can install it according to the official guidance of the transformers
library.
💻 Usage Examples
Basic Usage
You can run this model through multiple interface choices.
transformers
As the Qwen team suggested, you can use the following code:
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "ertghiu256/Qwen3-4b-tcomanr-merge"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
try:
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
vllm
Run the following command:
vllm serve ertghiu256/Qwen3-4b-tcomanr-merge --enable-reasoning --reasoning-parser deepseek_r1
Sglang
Run the following command:
python -m sglang.launch_server --model-path ertghiu256/Qwen3-4b-tcomanr-merge --reasoning-parser deepseek-r1
llama.cpp
You can choose one of the following commands to run:
llama-server --hf-repo ertghiu256/Qwen3-4b-tcomanr-merge
or
llama-cli --hf ertghiu256/Qwen3-4b-tcomanr-merge
ollama
Run the following command:
ollama run hf.co/ertghiu256/Qwen3-4b-tcomanr-merge:Q4_K_M
lm studio
Search for the following in the lm studio model search list and then download:
ertghiu256/Qwen3-4b-tcomanr-merge
Recommended Parameters
temp: 0.6
num_ctx: ≥8192
top_p: 0.95
top_k: 10
📚 Documentation
Merge Details
This model was merged using the TIES merge method with Qwen/Qwen3 - 4B as the base model.
Models
The following models were included in the merge:
Configuration
The following YAML configuration was used to produce this model:
models:
- model: ertghiu256/qwen3-math-reasoner
parameters:
weight: 0.7
- model: ertghiu256/qwen3-4b-code-reasoning
parameters:
weight: 0.8
- model: ertghiu256/qwen-3-4b-mixture-of-thought
parameters:
weight: 0.9
- model: POLARIS-Project/Polaris-4B-Preview
parameters:
weight: 0.7
- model: ertghiu256/qwen3-multi-reasoner
parameters:
weight: 0.8
- model: ValiantLabs/Qwen3-4B-Esper3
parameters:
weight: 0.8
- model: Tesslate/UIGEN-T3-4B-Preview-MAX
parameters:
weight: 0.8
- model: ValiantLabs/Qwen3-4B-ShiningValiant3
parameters:
weight: 0.9
- model: prithivMLmods/Crux-Qwen3_OpenThinking-4B
parameters:
weight: 0.4
merge_method: ties
base_model: Qwen/Qwen3-4B
parameters:
normalize: true
int8_mask: true
dtype: float16
Information Table
Property |
Details |
Base Model |
ertghiu256/qwen3-4b-code-reasoning, Qwen/Qwen3-4B, Tesslate/UIGEN-T3-4B-Preview-MAX, ertghiu256/qwen-3-4b-mixture-of-thought, POLARIS-Project/Polaris-4B-Preview, ertghiu256/qwen3-math-reasoner, ertghiu256/qwen3-multi-reasoner, ValiantLabs/Qwen3-4B-Esper3, ValiantLabs/Qwen3-4B-ShiningValiant3, prithivMLmods/Crux-Qwen3_OpenThinking-4B |
Library Name |
transformers |
Tags |
mergekit, merge, qwen3, think, reason, reasoning |