🚀 MiniLM-L6-danish-encoder
This is a lightweight sentence-transformers model for Danish NLP, which maps sentences and paragraphs to a 384 - dimensional dense vector space and can be used for tasks such as clustering or semantic search.
⚠️ Important Note
A new version is available, trained on more data and otherwise identical KennethTM/MiniLM-L6-danish-encoder-v2
Property |
Details |
Pipeline Tag |
sentence-similarity |
Tags |
sentence-transformers, feature-extraction, sentence-similarity |
License |
mit |
Datasets |
squad, eli5, sentence-transformers/embedding-training-data |
Language |
da |
Library Name |
sentence-transformers |
🚀 Quick Start
This is a lightweight (~22 M parameters) sentence-transformers model for Danish NLP. It maps sentences & paragraphs to a 384 - dimensional dense vector space and can be used for tasks like clustering or semantic search. The maximum sequence length is 512 tokens.
The model was not pre - trained from scratch but adapted from the English version of sentence-transformers/all-MiniLM-L6-v2 with a Danish tokenizer. It was trained on ELI5 and SQUAD data machine - translated from English to Danish.
📦 Installation
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
💻 Usage Examples
Basic Usage
If you have sentence-transformers installed, you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["Kører der cykler på vejen?", "En panda løber på vejen.", "En mand kører hurtigt forbi på cykel."]
model = SentenceTransformer('KennethTM/MiniLM-L6-danish-encoder')
embeddings = model.encode(sentences)
print(embeddings)
Advanced Usage
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling - operation on - top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
import torch.nn.functional as F
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ["Kører der cykler på vejen?", "En panda løber på vejen.", "En mand kører hurtigt forbi på cykel."]
tokenizer = AutoTokenizer.from_pretrained('KennethTM/MiniLM-L6-danish-encoder')
model = AutoModel.from_pretrained('KennethTM/MiniLM-L6-danish-encoder')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:")
print(sentence_embeddings)
📄 License
This project is licensed under the MIT license.