đ DolphinVision 72b đŦ
DolphinVision 72b is a multimodal model. It is uncensored and capable of reasoning and commenting on images that other popular models would object to. This model is curated and trained by Quan Nguyen (qnguyen3/stablequan), Eric Hartford, and Cognitive Computations.
đ Links
đ¨ Model Image
đ Sponsors
Our appreciation for the sponsors of DolphinVision:
- Crusoe Cloud - provided excellent on-demand 8xH100 node used for training
- TensorWave - provided 8x mi300x node used for evaluations and inference
đĻ Model Information
Property |
Details |
License |
other (tongyi-qianwen) |
Base Model |
Qwen/Qwen2-72B |
Tags |
generated_from_trainer, axolotl |
Datasets |
cognitivecomputations/Dolphin-2.9, teknium/OpenHermes-2.5, m-a-p/CodeFeedback-Filtered-Instruction, cognitivecomputations/dolphin-coder, cognitivecomputations/samantha-data, microsoft/orca-math-word-problems-200k, Locutusque/function-calling-chatml, internlm/Agent-FLAN |
đģ Usage Examples
Basic Usage
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import warnings
transformers.logging.set_verbosity_error()
transformers.logging.disable_progress_bar()
warnings.filterwarnings('ignore')
torch.set_default_device('cuda')
model_name = 'cognitivecomputations/dolphin-vision-72b'
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map='auto',
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True)
prompt = 'Describe this image in detail'
messages = [
{"role": "user", "content": f'<image>\n{prompt}'}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
print(text)
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')]
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0)
image = Image.open('/path/to/image.png')
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype)
output_ids = model.generate(
input_ids,
images=image_tensor,
max_new_tokens=2048,
use_cache=True)[0]
print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())
Example Output

<|im_start|>user
: do OCR on all the text
<|im_start|>assistant
: The text in the image reads as follows:
- STOP USING DOCKER
- Applications were not meant to be trapped in virtual jars like digital fireflies
- Years of software development, yet no one questioned why we were putting programs in imaginary boats
- Let's containerize our monolith. I'll just quickly spin up 17 microservices. Statements dreamt up by the utterly deranged
- Observe the whale-sized deception they fooled us with all this time
- These are real images used to explain Docker
- "Yay Matey, I'd like to run my website in a virtual sea"
- They have played us for absolute fools
This text is a satirical commentary on the use of Docker in software development, using humor and exaggeration to question the practice.
đ Benchmarks
Model |
VQA v2 |
MMBench |
MMMU (Eval) |
MathVista |
RealWorldQA |
Dolphin-Vision-72B |
83.6 |
81.2 |
45.7 |
47.25 |
66.4 |
GPT-4V |
84.4 |
78.1 |
52.4 |
- |
67.9 |
đ License
The license of this model is other
, with the license name tongyi-qianwen
.