đ simpletuner-finetuned-sd3
This is a full - rank finetuned model derived from sd3/unknown-model, specialized in text - to - image and image - to - image tasks.
đ Quick Start
This model is a full rank finetune derived from sd3/unknown-model.
The main validation prompt used during training was:
A photo-realistic pathology image
⨠Features
- Multiple Tasks: Supports text - to - image and image - to - image tasks.
- Customizable Settings: Allows users to adjust various parameters for validation and training.
đĻ Installation
No specific installation steps are provided in the original document.
đģ Usage Examples
Basic Usage
import torch
from diffusers import DiffusionPipeline
model_id = 'Minh-Ha/simpletuner-finetuned-sd3'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
prompt = "A photo-realistic pathology image"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
model_output.save("output.png", format="PNG")
đ Documentation
Validation settings
Property |
Details |
CFG |
3.0 |
CFG Rescale |
0.0 |
Steps |
20 |
Sampler |
FlowMatchEulerDiscreteScheduler |
Seed |
42 |
Resolution |
1024x1024 |
Skip - layer guidance |
|
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Property |
Details |
Training epochs |
1 |
Training steps |
5000 |
Learning rate |
5e - 06 |
Learning rate schedule |
polynomial |
Warmup steps |
100 |
Max grad value |
2.0 |
Effective batch size |
4 |
Micro - batch size |
1 |
Gradient accumulation steps |
4 |
Number of GPUs |
1 |
Gradient checkpointing |
True |
Prediction type |
flow_matching (extra parameters=['shift=3']) |
Optimizer |
adamw_bf16 |
Trainable parameter precision |
Pure BF16 |
Base model precision |
no_change |
Caption dropout probability |
0.1% |
Datasets
images - 512
Property |
Details |
Repeats |
1 |
Total number of images |
3061 |
Total number of aspect buckets |
1 |
Resolution |
0.262144 megapixels |
Cropped |
True |
Crop style |
center |
Crop aspect |
square |
Used for regularisation data |
No |
images - 768
Property |
Details |
Repeats |
1 |
Total number of images |
2242 |
Total number of aspect buckets |
1 |
Resolution |
0.589824 megapixels |
Cropped |
True |
Crop style |
center |
Crop aspect |
square |
Used for regularisation data |
No |
images - 1024
Property |
Details |
Repeats |
1 |
Total number of images |
1449 |
Total number of aspect buckets |
1 |
Resolution |
1.048576 megapixels |
Cropped |
True |
Crop style |
center |
Crop aspect |
square |
Used for regularisation data |
No |
đ License
The license for this model is 'other'.