quantized_by: bartowski
pipeline_tag: text-generation
base_model: nvidia/Llama-3_1-Nemotron-Ultra-253B-v1
license: other
tags:
- nvidia
- llama-3
license_link: https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
language:
- en
base_model_relation: quantized
license_name: nvidia-open-model-license
NVIDIA製Llama-3_1-Nemotron-Ultra-253B-v1のLlamacpp imatrix量子化
llama.cppのリリースb5270を使用して量子化しました。
オリジナルモデル: https://huggingface.co/nvidia/Llama-3_1-Nemotron-Ultra-253B-v1
全ての量子化はimatrixオプションを使用し、こちらのデータセットから作成されました。
LM Studioで実行可能
llama.cppまたは他のllama.cppベースのプロジェクトで直接実行可能
プロンプト形式
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
以下のファイルをダウンロード(ブランチ全体ではなく):
埋め込み/出力重み
一部の量子化(Q3_K_XL、Q4_K_Lなど)は標準的な量子化手法で、埋め込みと出力重みを通常のデフォルト値ではなくQ8_0で量子化しています。
huggingface-cliを使用したダウンロード
クリックしてダウンロード手順を表示
まず、huggingface-cliがインストールされていることを確認してください:
pip install -U "huggingface_hub[cli]"
その後、特定のファイルを指定してダウンロードできます:
huggingface-cli download bartowski/nvidia_Llama-3_1-Nemotron-Ultra-253B-v1-GGUF --include "nvidia_Llama-3_1-Nemotron-Ultra-253B-v1-Q4_K_M.gguf" --local-dir ./
モデルが50GBを超える場合、複数のファイルに分割されています。それらをすべてローカルフォルダにダウンロードするには、以下を実行します:
huggingface-cli download bartowski/nvidia_Llama-3_1-Nemotron-Ultra-253B-v1-GGUF --include "nvidia_Llama-3_1-Nemotron-Ultra-253B-v1-Q8_0/*" --local-dir ./
新しいlocal-dir(nvidia_Llama-3_1-Nemotron-Ultra-253B-v1-Q8_0)を指定するか、すべてをその場(./)にダウンロードできます
ARM/AVX情報
以前はQ4_0_4_4/4_8/8_8をダウンロードし、これらの重みはメモリ内でインターリーブされ、ARMおよびAVXマシンでのパフォーマンスを向上させるために一度により多くのデータをロードしていました。
しかし現在では、重みの「オンライン再パッキング」と呼ばれる機能があります。詳細はこのPRをご覧ください。Q4_0を使用し、ハードウェアが重みの再パッキングの恩恵を受ける場合、自動的にオンザフライで実行されます。
llama.cppビルドb4282以降、Q4_0_X_Xファイルを実行できなくなり、代わりにQ4_0を使用する必要があります。
さらに、このPRのおかげで、IQ4_NLを使用してやや良い品質を得ることができます。これはARM用に重みを再パッキングしますが、現時点では4_4のみです。ロード時間は遅くなる可能性がありますが、全体的な速度向上につながります。
クリックしてQ4_0_X_X情報を表示(非推奨)
このセクションは、Q4_0とオンライン再パッキングを使用した場合の潜在的な理論的性能向上を示すために保持しています。
クリックしてAVX2システム(EPYC7702)でのベンチマークを表示
model |
size |
params |
backend |
threads |
test |
t/s |
% (vs Q4_0) |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
pp512 |
204.03 ± 1.03 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
pp1024 |
282.92 ± 0.19 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
pp2048 |
259.49 ± 0.44 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
tg128 |
39.12 ± 0.27 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
tg256 |
39.31 ± 0.69 |
100% |
qwen2 3B Q4_0 |
1.70 GiB |
3.09 B |
CPU |
64 |
tg512 |
40.52 ± 0.03 |
100% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
pp512 |
301.02 ± 1.74 |
147% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
pp1024 |
287.23 ± 0.20 |
101% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
pp2048 |
262.77 ± 1.81 |
101% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
tg128 |
18.80 ± 0.99 |
48% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
tg256 |
24.46 ± 3.04 |
83% |
qwen2 3B Q4_K_M |
1.79 GiB |
3.09 B |
CPU |
64 |
tg512 |
36.32 ± 3.59 |
90% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
pp512 |
271.71 ± 3.53 |
133% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
pp1024 |
279.86 ± 45.63 |
100% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
pp2048 |
320.77 ± 5.00 |
124% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
tg128 |
43.51 ± 0.05 |
111% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
tg256 |
43.35 ± 0.09 |
110% |
qwen2 3B Q4_0_8_8 |
1.69 GiB |
3.09 B |
CPU |
64 |
tg512 |
42.60 ± 0.31 |
105% |
Q4_0_8_8はプロンプト処理に良い向上をもたらし、テキスト生成にも小さな向上があります
どのファイルを選ぶべきか?
詳細はこちら
Artefact2による優れた解説と各種性能を示すチャートがこちらにあります
最初に、実行可能なモデルの大きさを把握する必要があります。これには、RAMやVRAMの量を確認する必要があります。
モデルを可能な限り高速に実行したい場合は、モデル全体をGPUのVRAMに収める必要があります。GPUの総VRAMより1-2GB小さい量子化を選んでください。
絶対的な最高品質を求めたい場合は、システムRAMとGPUのVRAMを合計し、同様に合計より1-2GB小さい量子化を選んでください。
次に、「I-quant」か「K-quant」を使用するか決める必要があります。
あまり考えたくない場合は、K-quantのいずれかを選んでください。これは「QX_K_X」形式で、例えばQ5_K_Mなどです。
さらに詳しく知りたい場合は、この非常に便利な機能マトリックスを確認してください:
llama.cpp機能マトリックス
基本的に、Q4以下を目指していて、cuBLAS(Nvidia)またはrocBLAS(AMD)を使用している場合は、I-quantを検討すべきです。これは「IQX_X」形式で、例えばIQ3_Mなどです。これらは新しく、サイズに対してより良い性能を提供します。
これらのI-quantはCPUでも使用できますが、K-quant相当よりも遅くなるため、速度と性能のトレードオフを考慮する必要があります。
クレジット
imatrixキャリブレーションデータセット作成の支援をしてくれたkalomazeとDampfに感謝します。
埋め込み/出力の実験にインスピレーションを与えてくれたZeroWwに感謝します。
私の仕事を支援してくれたLM Studioに感謝します。
私の仕事を支援したいですか?私のko-fiページはこちら: https://ko-fi.com/bartowski