Model Overview
Model Features
Model Capabilities
Use Cases
🚀 InternVL3-2B
InternVL3-2B 是先進的多模態大語言模型(MLLM)系列,相比 InternVL 2.5 展現出更優的多模態感知和推理能力,還拓展了多模態能力,涵蓋工具使用、GUI 代理、工業圖像分析、3D 視覺感知等。
相關鏈接
- GitHub
- InternVL 1.0
- InternVL 1.5
- InternVL 2.5
- InternVL2.5-MPO
- InternVL3
- Blog
- Chat Demo
- HF Demo
- Quick Start
- Documents

✨ 主要特性
- 卓越性能:相比 InternVL 2.5,InternVL3 具有更出色的多模態感知和推理能力,整體性能優越。
- 能力拓展:將多模態能力拓展到工具使用、GUI 代理、工業圖像分析、3D 視覺感知等領域。
- 統一訓練:採用原生多模態預訓練方法,將語言和視覺學習整合到一個預訓練階段,提升模型處理視覺 - 語言任務的能力。
- 長上下文理解:集成可變視覺位置編碼(V2PE),使模型具有更好的長上下文理解能力。
📦 安裝指南
LMDeploy 安裝
# 如果 lmdeploy<0.7.3,需要顯式設置 chat_template_config=ChatTemplateConfig(model_name='internvl2_5')
pip install lmdeploy>=0.7.3
依賴安裝
pip install openai
💻 使用示例
基礎用法
模型加載
import torch
from transformers import AutoTokenizer, AutoModel
path = "OpenGVLab/InternVL3-2B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
推理示例
import math
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
def split_model(model_name):
device_map = {}
world_size = torch.cuda.device_count()
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
num_layers = config.llm_config.num_hidden_layers
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.model.rotary_emb'] = 0
device_map['language_model.lm_head'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
return device_map
# If you set `load_in_8bit=True`, you will need two 80GB GPUs.
# If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
path = 'OpenGVLab/InternVL3-2B'
device_map = split_model('InternVL3-2B')
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
load_in_8bit=False,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True,
device_map=device_map).eval()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# set the max number of tiles in `max_num`
pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=True)
# pure-text conversation (純文本對話)
question = 'Hello, who are you?'
response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Can you tell me a story?'
response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# single-image single-round conversation (單圖像單輪對話)
question = '<image>\nPlease describe the image shortly.'
response = model.chat(tokenizer, pixel_values, question, generation_config)
print(f'User: {question}\nAssistant: {response}')
# single-image multi-round conversation (單圖像多輪對話)
question = '<image>\nPlease describe the image in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Please write a poem according to the image.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, combined images (多圖像多輪對話,組合圖像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
question = '<image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# multi-image multi-round conversation, separate images (多圖像多輪對話,分離圖像)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list,
history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'What are the similarities and differences between these two images.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list,
history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
# batch inference, single image per sample (單圖像批量推理)
pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
responses = model.batch_chat(tokenizer, pixel_values,
num_patches_list=num_patches_list,
questions=questions,
generation_config=generation_config)
for question, response in zip(questions, responses):
print(f'User: {question}\nAssistant: {response}')
# video multi-round conversation (視頻多輪對話)
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list, num_patches_list = [], []
transform = build_transform(input_size=input_size)
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(tile) for tile in img]
pixel_values = torch.stack(pixel_values)
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
pixel_values = torch.cat(pixel_values_list)
return pixel_values, num_patches_list
video_path = './examples/red-panda.mp4'
pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
question = video_prefix + 'What is the red panda doing?'
# Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=None, return_history=True)
print(f'User: {question}\nAssistant: {response}')
question = 'Describe this video in detail.'
response, history = model.chat(tokenizer, pixel_values, question, generation_config,
num_patches_list=num_patches_list, history=history, return_history=True)
print(f'User: {question}\nAssistant: {response}')
高級用法
流式輸出
from transformers import TextIteratorStreamer
from threading import Thread
# Initialize the streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
# Define the generation configuration
generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
# Start the model chat in a separate thread
thread = Thread(target=model.chat, kwargs=dict(
tokenizer=tokenizer, pixel_values=pixel_values, question=question,
history=None, return_history=False, generation_config=generation_config,
))
thread.start()
# Initialize an empty string to store the generated text
generated_text = ''
# Loop through the streamer to get the new text as it is generated
for new_text in streamer:
if new_text == model.conv_template.sep:
break
generated_text += new_text
print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
LMDeploy 示例
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
model = 'OpenGVLab/InternVL3-2B'
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
response = pipe(('describe this image', image))
print(response.text)
多圖像推理
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
from lmdeploy.vl.constants import IMAGE_TOKEN
model = 'OpenGVLab/InternVL3-2B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
image_urls=[
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
]
images = [load_image(img_url) for img_url in image_urls]
# Numbering images improves multi-image conversations
response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
print(response.text)
批量提示推理
from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
model = 'OpenGVLab/InternVL3-2B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
image_urls=[
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
"https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
]
prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
response = pipe(prompts)
print(response)
多輪對話
from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig, ChatTemplateConfig
from lmdeploy.vl import load_image
model = 'OpenGVLab/InternVL3-2B'
pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
sess = pipe.chat(('describe this image', image), gen_config=gen_config)
print(sess.response.text)
sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
print(sess.response.text)
服務部署
lmdeploy serve api_server OpenGVLab/InternVL3-2B --chat-template internvl2_5 --server-port 23333 --tp 1
OpenAI 風格接口調用
from openai import OpenAI
client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
model=model_name,
messages=[{
'role':
'user',
'content': [{
'type': 'text',
'text': 'describe this image',
}, {
'type': 'image_url',
'image_url': {
'url':
'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
},
}],
}],
temperature=0.8,
top_p=0.8)
print(response)
📚 詳細文檔
InternVL3 系列概述
模型名稱 | 視覺部分 | 語言部分 | HF 鏈接 |
---|---|---|---|
InternVL3-1B | InternViT-300M-448px-V2_5 | Qwen2.5-0.5B | 鏈接 |
InternVL3-2B | InternViT-300M-448px-V2_5 | Qwen2.5-1.5B | 鏈接 |
InternVL3-8B | InternViT-300M-448px-V2_5 | Qwen2.5-7B | 鏈接 |
InternVL3-9B | InternViT-300M-448px-V2_5 | internlm3-8b-instruct | 鏈接 |
InternVL3-14B | InternViT-300M-448px-V2_5 | Qwen2.5-14B | 鏈接 |
InternVL3-38B | InternViT-6B-448px-V2_5 | Qwen2.5-32B | 鏈接 |
InternVL3-78B | InternViT-6B-448px-V2_5 | Qwen2.5-72B | 鏈接 |
模型架構
InternVL3 保留了與 InternVL 2.5 及其前身 InternVL 1.5 和 2.0 相同的模型架構,遵循 "ViT - MLP - LLM" 範式。在新版本中,使用隨機初始化的 MLP 投影器,將新的增量預訓練的 InternViT 與各種預訓練的 LLM(包括 InternLM 3 和 Qwen 2.5)集成。
訓練策略
原生多模態預訓練
提出原生多模態預訓練方法,將語言和視覺學習整合到一個預訓練階段。與先訓練純語言模型再適應其他模態的標準範式不同,該方法將多模態數據(如圖像 - 文本、視頻 - 文本或圖像 - 文本交錯序列)與大規模文本語料交織。這種統一訓練方案使模型能夠同時學習語言和多模態表示,最終提高其處理視覺 - 語言任務的能力,無需單獨的對齊或橋接模塊。
監督微調
在這個階段,採用了 InternVL2.5 中提出的隨機 JPEG 壓縮、平方損失重新加權和多模態數據打包技術。與 InternVL2.5 相比,InternVL3 的 SFT 階段的主要進步在於使用了更高質量和更多樣化的訓練數據。
混合偏好優化
在預訓練和 SFT 期間,模型根據先前的真實標記預測下一個標記。然而,在推理期間,模型根據自己的先前輸出預測每個標記。這種真實標記和模型預測標記之間的差異會引入分佈偏移,從而損害模型的思維鏈(CoT)推理能力。為了緩解這個問題,採用 MPO,引入正樣本和負樣本的額外監督,使模型響應分佈與真實分佈對齊,從而提高推理性能。
測試時縮放
測試時縮放已被證明是增強 LLM 和 MLLM 推理能力的有效方法。在這項工作中,使用 Best - of - N 評估策略,並使用 VisualPRM - 8B 作為評判模型,為推理和數學評估選擇最佳響應。
評估
多模態能力評估
包括多模態推理和數學、OCR、圖表和文檔理解、多圖像和現實世界理解、綜合多模態和幻覺評估、視覺定位、多模態多語言理解、視頻理解、GUI 定位、空間推理等方面的評估。
語言能力評估
將 InternVL3 與 Qwen2.5 Chat 模型進行比較,由於原生多模態預訓練,InternVL3 系列在整體文本性能上比 Qwen2.5 系列更好。
消融研究
原生多模態預訓練
在 InternVL2 - 8B 模型上進行實驗,保持其架構、初始化參數和訓練數據完全不變。將傳統的 MLP 預熱階段替換為原生多模態預訓練過程,隔離原生多模態預訓練對模型整體多模態能力的貢獻。
混合偏好優化
使用 MPO 微調的模型在七個多模態推理基準測試中表現出比沒有 MPO 的模型更好的推理性能。
可變視覺位置編碼
引入 V2PE 導致大多數評估指標的性能顯著提升。
🔧 技術細節
模型架構細節
- 採用 "ViT - MLP - LLM" 範式,使用隨機初始化的 MLP 投影器集成新的增量預訓練的 InternViT 與各種預訓練的 LLM。
- 應用像素重排操作,將視覺標記數量減少到原來的四分之一。
- 採用與 InternVL 1.5 類似的動態分辨率策略,將圖像劃分為 448×448 像素的圖塊。
- 從 InternVL 2.0 開始,增加對多圖像和視頻數據的支持。
- 集成可變視覺位置編碼(V2PE),利用更小、更靈活的位置增量處理視覺標記。
訓練策略細節
原生多模態預訓練
將多模態數據與大規模文本語料交織,使模型同時學習語言和多模態表示。
監督微調
採用隨機 JPEG 壓縮、平方損失重新加權和多模態數據打包技術,使用更高質量和更多樣化的訓練數據。
混合偏好優化
引入正樣本和負樣本的額外監督,使模型響應分佈與真實分佈對齊。
測試時縮放
使用 Best - of - N 評估策略和 VisualPRM - 8B 作為評判模型。
📄 許可證
本項目採用 MIT 許可證發佈。本項目使用預訓練的 Qwen2.5 作為組件,該組件遵循 Qwen 許可證。
引用
如果您在研究中發現本項目有用,請考慮引用:
@article{chen2024expanding,
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
journal={arXiv preprint arXiv:2412.05271},
year={2024}
}
@article{wang2024mpo,
title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
journal={arXiv preprint arXiv:2411.10442},
year={2024}
}
@article{chen2024far,
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
@inproceedings{chen2024internvl,
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={24185--24198},
year={2024}
}

