đ simpletuner-sdxl-lora-test
This project is a LyCORIS adapter derived from stabilityai/stable-diffusion-xl-base-1.0. It aims to generate photo - realistic images, with a focus on cat images during validation.
đ Quick Start
The main validation prompt used during training was:
A photo - realistic image of a cat
⨠Features
- Specific Validation Settings: Defined CFG, CFG Rescale, Steps, Sampler, Seed, and Resolution for validation.
- Training Details: Clearly outlines training epochs, steps, learning rate, and other training - related parameters.
- Dataset Information: Provides details about the datasets used for training.
- Inference Code: Offers a complete Python code example for inference.
đĻ Installation
No specific installation steps are provided in the original README.
đģ Usage Examples
Basic Usage
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
def download_adapter(repo_id: str):
import os
from huggingface_hub import hf_hub_download
adapter_filename = "pytorch_lora_weights.safetensors"
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models'))
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_")
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path)
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename)
os.makedirs(path_to_adapter, exist_ok=True)
hf_hub_download(
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter
)
return path_to_adapter_file
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
adapter_repo_id = 'bghira/simpletuner-sdxl-lora-test'
adapter_filename = 'pytorch_lora_weights.safetensors'
adapter_file_path = download_adapter(repo_id=adapter_repo_id)
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.unet)
wrapper.merge_to()
prompt = "A photo-realistic image of a cat"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=4.2,
guidance_rescale=0.0,
).images[0]
model_output.save("output.png", format="PNG")
đ Documentation
Validation settings
- CFG:
4.2
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
ddim
- Seed:
42
- Resolution:
1024x1024
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 1
- Training steps: 390
- Learning rate: 3e - 07
- Learning rate schedule: constant
- Warmup steps: 100
- Max grad value: 2.0
- Effective batch size: 3
- Micro - batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 3
- Gradient checkpointing: True
- Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])
- Optimizer: bnb - lion8bit
- Trainable parameter precision: Pure BF16
- Base model precision:
no_change
- Caption dropout probability: 0.1%
LyCORIS Config:
{
"bypass_mode": true,
"algo": "lokr",
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 12,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 12
},
"FeedForward": {
"factor": 6
}
}
}
}
Datasets
signs - discovery
- Repeats: 0
- Total number of images: ~423
- Total number of aspect buckets: 5
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
signs - discovery - 512
- Repeats: 0
- Total number of images: ~420
- Total number of aspect buckets: 4
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
đ§ Technical Details
The project uses a LyCORIS adapter based on the Stable Diffusion XL base model. It has specific training and validation settings, and the text encoder of the base model is reused for inference. The training process involves multiple parameters such as learning rate, batch size, and gradient checkpointing.
đ License
The project is licensed under the creativeml - openrail - m
license.