🚀 LLaVAction-0.5B
LLaVAction-0.5B是一个用于动作识别的多模态大语言模型,基于Qwen2语言模型训练,可处理视频文本任务,在动作识别领域有重要应用价值。
🚀 快速开始
LLaVAction-0.5B模型基于Qwen2语言模型,在EPIC - KITCHENS - 100 - MQA数据集上进行训练,上下文窗口为32K个标记。
✨ 主要特性
- 多模态处理:支持视频和文本的多模态输入输出。
- 动作识别:专注于动作识别任务,可对视频中的动作进行详细描述。
- 基于强大语言模型:以Qwen2为基础,拥有32K标记的上下文窗口。
💻 使用示例
基础用法
!pip install llavaction
from llavaction.model.builder import load_pretrained_model
from llavaction.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llavaction.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llavaction.conversation import conv_templates, SeparatorStyle
from PIL import Image
import requests
import copy
import torch
import sys
import warnings
from decord import VideoReader, cpu
import numpy as np
warnings.filterwarnings("ignore")
video_path = "XXXX"
perspective_prompt = "You are seeing this video from egocentric view and you are the person. Your hands are sometimes interacting with objects. What action are you doing?"
task_prompt = "Describe in details what you see from the video frames."
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
spare_frames = vr.get_batch(frame_idx).asnumpy()
return spare_frames,frame_time,video_time
pretrained = "MLAdaptiveIntelligence/LLaVAction-0.5B"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map)
model.eval()
max_frames_num = 64
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
video = [video]
conv_template = "qwen_1_5"
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. "
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruction}\n{perspective_prompt} {task_prompt}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
input_ids,
images=video,
modalities= ["video"],
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
🔧 技术细节
训练详情
具体训练细节可参考Ye等人2025年的论文:arxiv.org/abs/2503.18712
模型信息
属性 |
详情 |
模型架构 |
SO400M + Qwen2 |
初始化模型 |
lmms - lab/llava - onevision - qwen2 - 0.5b - ov |
训练数据 |
EPIC - KITCHENS - 100 - MQA,2个训练周期,全量模型 |
精度 |
bfloat16 |
硬件与软件
- GPU:32 * Nvidia GH - 200(用于整个模型系列的训练)
- 编排工具:HuggingFace Trainer
- 神经网络框架:PyTorch
📄 许可证
本项目采用CC - BY - NC - SA 4.0许可证。
📚 引用信息
arXiv: arxiv.org/abs/2503.18712
@article{YeQi2025llavaction,
title={LLaVAction: evaluating and training multi-modal large language models for action recognition},
author={Ye, Shaokai and Qi, Haozhe and Mathis, Alexander and Mathis, Mackenzie W.},
journal={arXiv preprint},
year={2025}
}