🚀 RT-DETR俄罗斯车牌检测及类型分类
本模型是一个用于俄罗斯车牌检测及类型分类的模型,基于预训练模型微调而来,能够准确识别普通车牌和警察车牌,在评估集上取得了良好的检测效果。
🚀 快速开始
本模型是 PekingU/rtdetr_r50vd_coco_o365 在未知数据集上的微调版本。
它在评估集上取得了以下结果:
- 损失值:4.1673
- 平均精度均值(mAP):0.8829
- mAP@50:0.9858
- mAP@75:0.9736
- 车牌及其类型的 mAP:-1.0
- 大型目标 mAP:0.9689
- 中型目标 mAP:0.9125
- 普通车牌 mAP:0.857
- 警察车牌 mAP:0.9087
- 小型目标 mAP:0.696
- mAR@1:0.8686
- mAR@10:0.9299
- mAR@100:0.9357
- mAR@100 车牌及其类型:-1.0
- mAR@100 普通车牌:0.9169
- mAR@100 警察车牌:0.9545
- 大型目标 mAR:0.9844
- 中型目标 mAR:0.958
- 小型目标 mAR:0.8354
✨ 主要特性
- 精准检测:能够准确检测俄罗斯车牌,并区分普通车牌和警察车牌两种类型。
- 微调优化:基于强大的预训练模型进行微调,在特定数据集上表现出色。
💻 使用示例
基础用法
from transformers import AutoModelForObjectDetection, AutoImageProcessor
import torch
import supervision as sv
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForObjectDetection.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector').to(DEVICE)
processor = AutoImageProcessor.from_pretrained('Garon16/rtdetr_r50vd_russia_plate_detector')
path = 'path/to/image'
image = Image.open(path)
inputs = processor(image, return_tensors="pt").to(DEVICE)
with torch.no_grad():
outputs = model(**inputs)
w, h = image.size
results = processor.post_process_object_detection(
outputs, target_sizes=[(h, w)], threshold=0.3)
detections = sv.Detections.from_transformers(results[0]).with_nms(0.3)
labels = [
model.config.id2label[class_id]
for class_id
in detections.class_id
]
annotated_image = image.copy()
annotated_image = sv.BoundingBoxAnnotator().annotate(annotated_image, detections)
annotated_image = sv.LabelAnnotator().annotate(annotated_image, detections, labels=labels)
grid = sv.create_tiles(
[annotated_image],
grid_size=(1, 1),
single_tile_size=(512, 512),
tile_padding_color=sv.Color.WHITE,
tile_margin_color=sv.Color.WHITE
)
sv.plot_image(grid, size=(10, 10))
📚 详细文档
模型描述
该模型用于检测俄罗斯汽车的车牌,目前有两个类别:n_p(普通车牌)和 p_p(警察车牌)。
预期用途和限制
以下是使用该模型的示例代码,展示了如何进行车牌检测和可视化。
训练和评估数据
模型在自定义数据集上进行训练,数据集链接为:https://universe.roboflow.com/testcarplate/russian-license-plates-classification-by-this-type
训练过程
训练超参数
训练过程中使用了以下超参数:
属性 |
详情 |
学习率 |
5e-05 |
训练批次大小 |
32 |
评估批次大小 |
8 |
随机种子 |
42 |
优化器 |
使用 adamw_torch,β1=0.9,β2=0.999,ε=1e-08,无额外优化器参数 |
学习率调度器类型 |
线性 |
学习率调度器热身步数 |
300 |
训练轮数 |
20 |
训练结果
训练损失 |
轮数 |
步数 |
验证损失 |
mAP |
mAP@50 |
mAP@75 |
车牌及其类型的 mAP |
大型目标 mAP |
中型目标 mAP |
普通车牌 mAP |
警察车牌 mAP |
小型目标 mAP |
mAR@1 |
mAR@10 |
mAR@100 |
mAR@100 车牌及其类型 |
mAR@100 普通车牌 |
mAR@100 警察车牌 |
大型目标 mAR |
中型目标 mAR |
小型目标 mAR |
无日志记录 |
1.0 |
109 |
64.6127 |
0.035 |
0.0558 |
0.0379 |
-1.0 |
0.0039 |
0.0663 |
0.0191 |
0.0508 |
0.0071 |
0.1523 |
0.3009 |
0.3361 |
-1.0 |
0.3179 |
0.3543 |
0.7625 |
0.3788 |
0.1157 |
无日志记录 |
2.0 |
218 |
15.4008 |
0.8237 |
0.9418 |
0.9327 |
-1.0 |
0.893 |
0.879 |
0.7945 |
0.8529 |
0.4319 |
0.8203 |
0.8924 |
0.9018 |
-1.0 |
0.8766 |
0.9269 |
0.9656 |
0.9324 |
0.7653 |
无日志记录 |
3.0 |
327 |
9.4050 |
0.8439 |
0.9566 |
0.9479 |
-1.0 |
0.9439 |
0.8908 |
0.8158 |
0.872 |
0.5171 |
0.8416 |
0.908 |
0.9144 |
-1.0 |
0.9002 |
0.9286 |
0.9781 |
0.9368 |
0.8051 |
无日志记录 |
4.0 |
436 |
7.9164 |
0.8493 |
0.9665 |
0.9543 |
-1.0 |
0.9567 |
0.8903 |
0.8338 |
0.8648 |
0.5581 |
0.8481 |
0.9159 |
0.9267 |
-1.0 |
0.9173 |
0.936 |
0.975 |
0.949 |
0.8185 |
70.2867 |
5.0 |
545 |
6.8177 |
0.8525 |
0.9723 |
0.9602 |
-1.0 |
0.9521 |
0.8918 |
0.8234 |
0.8816 |
0.6025 |
0.8438 |
0.9214 |
0.9279 |
-1.0 |
0.9181 |
0.9378 |
0.975 |
0.9492 |
0.8211 |
70.2867 |
6.0 |
654 |
6.0182 |
0.854 |
0.9744 |
0.9619 |
-1.0 |
0.9574 |
0.8912 |
0.8251 |
0.8829 |
0.6123 |
0.8438 |
0.9176 |
0.927 |
-1.0 |
0.9137 |
0.9403 |
0.9781 |
0.9503 |
0.8163 |
70.2867 |
7.0 |
763 |
5.4024 |
0.8731 |
0.9772 |
0.9667 |
-1.0 |
0.9635 |
0.9113 |
0.8462 |
0.9001 |
0.6376 |
0.8608 |
0.9275 |
0.9336 |
-1.0 |
0.9202 |
0.9471 |
0.9781 |
0.956 |
0.8266 |
70.2867 |
8.0 |
872 |
5.2224 |
0.8726 |
0.9809 |
0.9767 |
-1.0 |
0.9582 |
0.9069 |
0.8487 |
0.8966 |
0.6472 |
0.8625 |
0.9265 |
0.9301 |
-1.0 |
0.9137 |
0.9464 |
0.9875 |
0.9528 |
0.8232 |
70.2867 |
9.0 |
981 |
4.7844 |
0.8679 |
0.9821 |
0.9687 |
-1.0 |
0.9574 |
0.9023 |
0.8451 |
0.8907 |
0.6382 |
0.8606 |
0.9213 |
0.9283 |
-1.0 |
0.9119 |
0.9448 |
0.9844 |
0.952 |
0.8165 |
4.2466 |
10.0 |
1090 |
5.1437 |
0.8729 |
0.9816 |
0.9762 |
-1.0 |
0.9577 |
0.9028 |
0.8448 |
0.901 |
0.6686 |
0.8605 |
0.9296 |
0.9359 |
-1.0 |
0.9203 |
0.9514 |
0.9781 |
0.9567 |
0.8413 |
4.2466 |
11.0 |
1199 |
4.5169 |
0.8858 |
0.9828 |
0.9768 |
-1.0 |
0.9707 |
0.9162 |
0.8628 |
0.9087 |
0.6734 |
0.8695 |
0.9264 |
0.931 |
-1.0 |
0.9121 |
0.95 |
0.9781 |
0.9538 |
0.823 |
4.2466 |
12.0 |
1308 |
4.5858 |
0.8813 |
0.9865 |
0.9744 |
-1.0 |
0.9623 |
0.9126 |
0.8585 |
0.9041 |
0.6815 |
0.8671 |
0.9308 |
0.9355 |
-1.0 |
0.9185 |
0.9526 |
0.9812 |
0.9583 |
0.8308 |
4.2466 |
13.0 |
1417 |
4.5345 |
0.8778 |
0.9843 |
0.9726 |
-1.0 |
0.957 |
0.9101 |
0.8526 |
0.903 |
0.6754 |
0.8628 |
0.9281 |
0.9335 |
-1.0 |
0.9158 |
0.9512 |
0.9812 |
0.9557 |
0.8314 |
3.589 |
14.0 |
1526 |
4.3003 |
0.8885 |
0.9857 |
0.9759 |
-1.0 |
0.9656 |
0.9189 |
0.8642 |
0.9128 |
0.6957 |
0.8724 |
0.9334 |
0.9375 |
-1.0 |
0.9194 |
0.9555 |
0.9875 |
0.959 |
0.8375 |
3.589 |
15.0 |
1635 |
4.3999 |
0.8819 |
0.986 |
0.9741 |
-1.0 |
0.9606 |
0.9118 |
0.8575 |
0.9064 |
0.6892 |
0.8659 |
0.9283 |
0.9336 |
-1.0 |
0.9137 |
0.9534 |
0.9844 |
0.9566 |
0.8245 |
3.589 |
16.0 |
1744 |
4.2719 |
0.8796 |
0.986 |
0.9726 |
-1.0 |
0.9661 |
0.9093 |
0.8543 |
0.905 |
0.6914 |
0.8649 |
0.927 |
0.9313 |
-1.0 |
0.9121 |
0.9505 |
0.9875 |
0.9543 |
0.8266 |
3.589 |
17.0 |
1853 |
4.2497 |
0.8838 |
0.9845 |
0.9733 |
-1.0 |
0.9656 |
0.9141 |
0.8599 |
0.9077 |
0.6997 |
0.8678 |
0.9295 |
0.9352 |
-1.0 |
0.9141 |
0.9562 |
0.9812 |
0.958 |
0.832 |
3.589 |
18.0 |
1962 |
4.2807 |
0.8829 |
0.9855 |
0.9754 |
-1.0 |
0.9673 |
0.9121 |
0.8558 |
0.9099 |
0.6964 |
0.8683 |
0.9286 |
0.9337 |
-1.0 |
0.9126 |
0.9548 |
0.9844 |
0.9555 |
0.8357 |
3.2442 |
19.0 |
2071 |
4.1978 |
0.8835 |
0.9861 |
0.9748 |
-1.0 |
0.9675 |
0.9121 |
0.8559 |
0.911 |
0.6932 |
0.8691 |
0.9272 |
0.9336 |
-1.0 |
0.9134 |
0.9538 |
0.9844 |
0.9557 |
0.8337 |
3.2442 |
20.0 |
2180 |
4.1673 |
0.8829 |
0.9858 |
0.9736 |
-1.0 |
0.9689 |
0.9125 |
0.857 |
0.9087 |
0.696 |
0.8686 |
0.9299 |
0.9357 |
-1.0 |
0.9169 |
0.9545 |
0.9844 |
0.958 |
0.8354 |
框架版本
- Transformers 4.46.0.dev0
- Pytorch 2.5.0+cu124
- Tokenizers 0.20.1
📄 许可证
本项目采用 Apache-2.0 许可证。