Safesql V1
Model Overview
Model Features
Model Capabilities
Use Cases
đ SafeSQL-v1 (Playground)
This is a Keras 3.x model specifically designed to detect malicious SQLs. It can identify various SQL injection vectors and was trained on a large dataset of SQLs.
⨠Features
- Comprehensive Detection: Capable of detecting various SQL injection vectors such as Error - based, Union - based, Blind, Boolean - based, Time - based, Out - of - band, and Stacked queries.
- Balanced Training Data: Trained on approximately 167K SQLs with an almost even distribution of malicious and benign SQLs.
- Advanced Training Techniques: Involves preprocessing for SQL with special masking tokens, feature selection, and a custom training schedule with learning rate adjustments.
- Gradient Protection: A special callback is used to prevent gradient explosions and adjust learning rate and model weights accordingly.
- Overfitting Prevention: Weight and kernel constraints are applied to achieve better generalization.
- Fast Inference: Mixed precision is used for faster model loading and inference.
đĻ Installation
- Based on your hardware (whether using GPU or not), please download the corresponding
requiremnts-[cpu/gpu].txt
file and install it (pip install -r requirements.txt
). - Download the model file
sqid.keras
.
đģ Usage Examples
Basic Usage
import re
from multiprocessing import cpu_count
from keras.src.saving import load_model
import pandas as pd
from numpy import int64
from pandarallel import pandarallel
from sklearn.preprocessing import RobustScaler
model = load_model('./sqid.keras')
pandarallel.initialize(use_memory_fs=True, nb_workers=cpu_count())
def sql_tokenize(sql_query):
sql_query = sql_query.replace('`', ' ').replace('%20', ' ').replace('=', ' = ').replace('((', ' (( ').replace(
'))', ' )) ').replace('(', ' ( ').replace(')', ' ) ').replace('||', ' || ').replace(',', '').replace(
'--', ' -- ').replace(':', ' : ').replace('%23', ' # ').replace('+', ' + ').replace('!=',
' != ') \
.replace('"', ' " ').replace('%26', ' and ').replace('$', ' $ ').replace('%28', ' ( ').replace('%2A', ' * ') \
.replace('%7C', ' | ').replace('&', ' & ').replace(']', ' ] ').replace('[', ' [ ').replace(';',
' ; ').replace(
'/*', ' /* ')
sql_reserved = {'SELECT', 'FROM', 'WHERE', 'AND', 'OR', 'NOT', 'IN', 'LIKE', 'ORDER', 'BY', 'GROUP', 'HAVING',
'LIMIT', 'BETWEEN', 'IS', 'NULL', '%', 'LIKE', 'MIN', 'MAX', 'AS', 'UPPER', 'LOWER', 'TO_DATE',
'=', '>', '<', '>=', '<=', '!=', '<>', 'BETWEEN', 'LIKE', 'EXISTS', 'JOIN', 'UNION', 'ALL',
'ASC', 'DESC', '||', 'AVG', 'LIMIT', 'EXCEPT', 'INTERSECT', 'CASE', 'WHEN', 'THEN', 'IF',
'IF', 'ANY', 'CAST', 'CONVERT', 'COALESCE', 'NULLIF', 'INNER', 'OUTER', 'LEFT', 'RIGHT', 'FULL',
'CROSS', 'OVER', 'PARTITION', 'SUM', 'COUNT', 'WITH', 'INTERVAL', 'WINDOW', 'OVER',
'ROW_NUMBER', 'RANK',
'DENSE_RANK', 'NTILE', 'FIRST_VALUE', 'LAST_VALUE', 'LAG', 'LEAD', 'DISTINCT', 'COMMENT',
'INSERT',
'UPDATE', 'DELETED', 'MERGE', '*', 'generate_series', 'char', 'chr', 'substr', 'lpad',
'extract',
'year', 'month', 'day', 'timestamp', 'number', 'string', 'concat', 'INFORMATION_SCHEMA',
"SQLITE_MASTER", 'TABLES', 'COLUMNS', 'CUBE', 'ROLLUP', 'RECURSIVE', 'FILTER', 'EXCLUDE',
'AUTOINCREMENT', 'WITHOUT', 'ROWID', 'VIRTUAL', 'INDEXED', 'UNINDEXED', 'SERIAL',
'DO', 'RETURNING', 'ILIKE', 'ARRAY', 'ANYARRAY', 'JSONB', 'TSQUERY', 'SEQUENCE',
'SYNONYM', 'CONNECT', 'START', 'LEVEL', 'ROWNUM', 'NOCOPY', 'MINUS', 'AUTO_INCREMENT', 'BINARY',
'ENUM', 'REPLACE', 'SET', 'SHOW', 'DESCRIBE', 'USE', 'EXPLAIN', 'STORED', 'VIRTUAL', 'RLIKE',
'MD5', 'SLEEP', 'BENCHMARK', '@@VERSION', 'VERSION', '@VERSION', 'CONVERT', 'NVARCHAR', '#',
'##', 'INJECTX',
'DELAY', 'WAITFOR', 'RAND',
}
tokens = sql_query.split()
tokens = [re.sub(r"""[^*\w\s.=\-><_|()!"']""", '', token) for token in tokens]
for i, token in enumerate(tokens):
if token.strip().upper() in sql_reserved:
continue
if token.strip().isnumeric():
tokens[i] = '#NUMBER#'
elif re.match(r'^[a-zA-Z_.|][a-zA-Z0-9_.|]*$', token.strip()):
tokens[i] = '#IDENTIFIER#'
elif re.match(r'^[\d:]*$', token.strip()):
tokens[i] = '#TIMESTAMP#'
elif '%' in token.strip():
tokens[i] = ' '.join(
[j.strip() if j.strip() in ('%', "'", "'") else '#IDENTIFIER#' for j in token.strip().split('%')])
return ' '.join(tokens)
def add_features(x):
s = ["num_tables", "num_columns", "num_literals", "num_parentheses", "has_union", "depth_nested_queries", "num_join", "num_sp_chars", "has_mismatched_quotes", "has_tautology"]
x['Query'] = x['Query'].copy().parallel_apply(lambda a: sql_tokenize(a))
x['num_tables'] = x['Query'].str.lower().str.count(r'FROM\s+#IDENTIFIER#', flags=re.I)
x['num_columns'] = x['Query'].str.lower().str.count(r'SELECT\s+#IDENTIFIER#', flags=re.I)
x['num_literals'] = x['Query'].str.lower().str.count("'[^']*'", flags=re.I) + x['Query'].str.lower().str.count(
'"[^"]"', flags=re.I)
x['num_parentheses'] = x['Query'].str.lower().str.count("\\(", flags=re.I) + x['Query'].str.lower().str.count(
'\\)',
flags=re.I)
x['has_union'] = x['Query'].str.lower().str.count(" union |union all", flags=re.I) > 0
x['has_union'] = x['has_union'].astype(int64)
x['depth_nested_queries'] = x['Query'].str.lower().str.count("\\(", flags=re.I)
x['num_join'] = x['Query'].str.lower().str.count(
" join |inner join|outer join|full outer join|full inner join|cross join|left join|right join",
flags=re.I)
x['num_sp_chars'] = x['Query'].parallel_apply(lambda a: len(re.findall(r'[\'";\-*/%=><|#]', a)))
x['has_mismatched_quotes'] = x['Query'].parallel_apply(
lambda sql_query: 1 if re.search(r"'.*[^']$|\".*[^\"]$", sql_query) else 0)
x['has_tautology'] = x['Query'].parallel_apply(lambda sql_query: 1 if re.search(r"'[\s]*=[\s]*'", sql_query) else 0)
return x
input_sqls = ['SELECT roomName , RoomId FROM Rooms WHERE basePrice > 160 AND maxOccupancy > 2;', # Not malicious
"ORDER BY 1,SLEEP(5),BENCHMARK(1000000,MD5('A')),4,5,6,7,8,9,10,11,12,13,14,15,16,17,18#", # Malicious
"; desc users; --", # Malicious
"ORDER BY 1,SLEEP(5),BENCHMARK(1000000,MD5('A')),4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27", # Malicious
"SELECT DISTINCT t2.datasetid FROM paperdataset AS t3 JOIN dataset AS t2 ON t3.datasetid = t2.datasetid JOIN paperkeyphrase AS t1 ON t1.paperid = t3.paperid JOIN keyphrase AS t4 ON t1.keyphraseid = t4.keyphraseid WHERE t4.keyphrasename = ""semantic parsing"";" # Not malicious
]
numeric_features = ["num_tables", "num_columns", "num_literals", "num_parentheses", "has_union", "depth_nested_queries", "num_join", "num_sp_chars", "has_mismatched_quotes", "has_tautology"]
input_df = pd.DataFrame(input_sqls, columns=['Query'])
input_df = add_features(input_df)
scaler = RobustScaler()
x_in = scaler.fit_transform(input_df[numeric_features])
preds = model.predict([input_df['Query'], x_in]).tolist()
for i, pred in enumerate(preds):
print()
print(f'Query: {input_sqls[i]}')
print(f'Malicious? {pred[0] >= 0.50} ({pred[0]})')
print()
# Run the benchmark
input_df = pd.read_csv('benchmark.csv')
hits = 0
data_size = input_df.shape[0]
miss_pos, miss_neg = [], []
total_negs = input_df[input_df['Label'] == 1.0].shape[0]
total_pos = input_df[input_df['Label'] == 0.0].shape[0]
pred_trans = ['Benign', 'Malicious']
false_metrics = {0: 0, 1: 0}
x_in = scaler.transform(input_df[numeric_features])
print('Running benchmark')
preds = model.predict([input_df['Query'], x_in])
miss_q = []
actuals = input_df['Label'].tolist()
for i, pred in enumerate(preds):
pred = int(pred[0] > .95)
if pred == actuals[i]:
hits += 1
else:
false_metrics[int(pred)] += 1
print('Finished benchmark.')
print('printing results.')
acc = round((hits / data_size) * 100, 2)
f_neg = round((false_metrics[0] / total_negs) * 100, 2)
f_pos = round((false_metrics[1] / total_pos) * 100, 2)
print(f'Total data: {data_size}')
print(f'Total Negatives: {total_negs} \t Total Positives: {total_pos}')
print()
print(f'Total hits: {hits}/{data_size} with accuracy of {acc}%.')
print(f'False Negatives: {false_metrics[0]}({f_neg}%) \t False Positives: {false_metrics[1]}({f_pos}%)', false_metrics[0], f_neg, false_metrics[1], f_pos)
đ Documentation
Model Meta
Property | Details |
---|---|
Feedback | aakash.howlader@gmail.com |
Model Type | Language model |
Language(s) (NLP) | English |
License | Apache 2.0 |
Playground | SafeSQL-v1-Demo |
Overview
This is a Keras 3.x model trained specifically to detect malicious SQLs. It is able to detect various SQL injection vectors such as Error - based, Union - based, Blind, Boolean - based, Time - based, Out - of - band, Stacked queries. This was trained on ~167K SQLs containing an almost even distribution of malicious and benign SQLs. Its training involved preprocessing specifically for SQL with special masking tokens. 28 additional numeric features were also generated and the top 10 among them were selected for training using Recursive Feature Elimination. The training consisted of a warm - up period with a smaller, sinusoidally decaying learning rate followed by a higher learning rate with cosine decay. A special callback was used to monitor for and protect against gradient explosions and automatically adjust the learning rate and model weights based on the scale of the explosion. Weight and kernel constraints are applied to help prevent overfitting and achieve better generalization. For faster model loading and inference, mixed precision has been used.
The best checkpoint has been saved and made available for use.
CONTEXT WINDOW: 1200 tokens
PARAMETERS: 30.7M (Trainable: 7.7M, Frozen: 2K, Optimizer: 23M)
NUMBER OF INPUTS: 2 - The SQL queries as string and extra numeric features.
NUMBER OF OUTPUTS: 1 - Probability that the given SQL is malicious (the output layer uses a sigmoid activation).
Checkpointed Epoch
823/823 ââââââââââââââââââââ 99s 120ms/step - AUPR: 0.9979 - f1_score: 0.5782 - fn: 64.0947 - fp: 8.2500 - loss: 0.0236 - precision: 0.9987 - recall: 0.9889 - val_AUPR: 0.9970 - val_f1_score: 0.5775 - val_fn: 34.0000 - val_fp: 4.0000 - val_loss: 0.0298 - val_precision: 0.9985 - val_recall: 0.9873 - learning_rate: 7.0911e-04
Benchmark Results
- Total SQLs: 30919
- Total Negatives: 11382
- Total Positives: 19537
- Total hits: 30844/30919 with accuracy of 99.76%.
- False Negatives: 69 - 0.61%
- False Positives: 6 - 0.03%
Training Data
The training data is made available here and the benchmark data is made available here. The data was curated from the following sources:
- https://www.kaggle.com/datasets/gambleryu/biggest-sql-injection-dataset/data
- https://huggingface.co/datasets/b-mc2/sql-create-context
- https://github.com/payloadbox/sql-injection-payload-list/tree/master/Intruder
- https://huggingface.co/datasets/ChrisHayduk/Llama-2-SQL-Dataset/viewer/default/eval
- https://huggingface.co/datasets/philikai/Spider-SQL-LLAMA2_train/viewer/default/train
Benchmark Data
- https://www.kaggle.com/datasets/sajid576/sql-injection-dataset?select=Modified_SQL_Dataset.csv
đ§ Technical Details
- Preprocessing: Special masking tokens are used for SQL preprocessing.
- Feature Generation: 28 additional numeric features are generated, and the top 10 are selected using Recursive Feature Elimination.
- Training Schedule: The training has a warm - up period with a smaller, sinusoidally decaying learning rate followed by a higher learning rate with cosine decay.
- Gradient Management: A special callback monitors and protects against gradient explosions, adjusting learning rate and model weights accordingly.
- Overfitting Prevention: Weight and kernel constraints are applied to prevent overfitting.
- Mixed Precision: Mixed precision is used for faster model loading and inference.
đ License
This project is licensed under the Apache 2.0 license.






