🚀 E5-base-en-ru
这是一个用于句子相似度任务的模型,是对原始模型进行词汇剪枝后的版本,仅使用俄语和英语令牌,在减小模型规模的同时可能适用于特定的双语场景。
🚀 快速开始
模型信息
这是 intfloat/multilingual-e5-base 的词汇剪枝版本,仅使用俄语和英语令牌。
规模
|
intfloat/multilingual-e5-base |
d0rj/e5-base-en-ru |
模型大小 (MB) |
1060.65 |
504.89 |
参数数量 |
278,043,648 |
132,354,048 |
词嵌入维度 |
192,001,536 |
46,311,936 |
性能
在 SberQuAD 开发基准测试上的性能。
SberQuAD (4122 个问题) 指标 |
intfloat/multilingual-e5-base |
d0rj/e5-base-en-ru |
recall@3 |
|
|
map@3 |
|
|
mrr@3 |
|
|
recall@5 |
|
|
map@5 |
|
|
mrr@5 |
|
|
recall@10 |
|
|
map@10 |
|
|
mrr@10 |
|
|
💻 使用示例
基础用法
transformers 库 - 直接使用
import torch.nn.functional as F
from torch import Tensor
from transformers import XLMRobertaTokenizer, XLMRobertaModel
def average_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
input_texts = [
'query: How does a corporate website differ from a business card website?',
'query: Где был создан первый троллейбус?',
'passage: The first trolleybus was created in Germany by engineer Werner von Siemens, probably influenced by the idea of his brother, Dr. Wilhelm Siemens, who lived in England, expressed on May 18, 1881 at the twenty-second meeting of the Royal Scientific Society. The electrical circuit was carried out by an eight-wheeled cart (Kontaktwagen) rolling along two parallel contact wires. The wires were located quite close to each other, and in strong winds they often overlapped, which led to short circuits. An experimental trolleybus line with a length of 540 m (591 yards), opened by Siemens & Halske in the Berlin suburb of Halensee, operated from April 29 to June 13, 1882.',
'passage: Корпоративный сайт — содержит полную информацию о компании-владельце, услугах/продукции, событиях в жизни компании. Отличается от сайта-визитки и представительского сайта полнотой представленной информации, зачастую содержит различные функциональные инструменты для работы с контентом (поиск и фильтры, календари событий, фотогалереи, корпоративные блоги, форумы). Может быть интегрирован с внутренними информационными системами компании-владельца (КИС, CRM, бухгалтерскими системами). Может содержать закрытые разделы для тех или иных групп пользователей — сотрудников, дилеров, контрагентов и пр.',
]
tokenizer = XLMRobertaTokenizer.from_pretrained('d0rj/e5-base-en-ru', use_cache=False)
model = XLMRobertaModel.from_pretrained('d0rj/e5-base-en-ru', use_cache=False)
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
transformers 库 - 管道使用
from transformers import pipeline
pipe = pipeline('feature-extraction', model='d0rj/e5-base-en-ru')
embeddings = pipe(input_texts, return_tensors=True)
embeddings[0].size()
sentence-transformers 库使用
from sentence_transformers import SentenceTransformer
sentences = [
'query: Что такое круглые тензоры?',
'passage: Abstract: we introduce a novel method for compressing round tensors based on their inherent radial symmetry. We start by generalising PCA and eigen decomposition on round tensors...',
]
model = SentenceTransformer('d0rj/e5-base-en-ru')
embeddings = model.encode(sentences, convert_to_tensor=True)
embeddings.size()
高级用法
- 使用 点积 距离进行检索。
- 对于非对称任务(如开放问答中的段落检索、即席信息检索),分别使用 "query: " 和 "passage: "。
- 对于对称任务(如语义相似度、双语挖掘、释义检索),使用 "query: " 前缀。
- 如果你想将嵌入用作特征(如线性探测分类、聚类),使用 "query: " 前缀。
📄 许可证
本项目采用 MIT 许可证。