
Minimax M1 80k
全球首個開源大規模混合注意力推理模型,總參數 456B,每 token 激活 45.9B 參數。採用 Lightning Attention 機制和 80K 思考預算,原生支援 1M token 上下文長度。在 AIME 2024 數學競賽中達到 86.0% 準確率,相比 DeepSeek R1 節省 75% 計算量,特別適合需要長輸入和深度思考的複雜任務。
Intelligence(Relatively Strong)
Speed(Slow)
Input Supported Modalities
Yes
Is Reasoning Model
1,000,000
Context Window
-
Maximum Output Tokens
-
Knowledge Cutoff
Pricing
- /M tokens
Input
- /M tokens
Output
¥5.94 /M tokens
Blended Price
Quick Simple Comparison
MiniMax-Text-01
¥0.14
MiniMax-Text-01
MiniMax M1 40k
Basic Parameters
MiniMax M1 80kTechnical Parameters
Parameter Count
Not Announced
Context Length
1.0M tokens
Training Data Cutoff
Open Source Category
Open Weights (Permissive License)
Multimodal Support
Text Only
Throughput
Release Date
2025-06-17
Response Speed
13.193,972 tokens/s
Benchmark Scores
Below is the performance of MiniMax M1 80k in various standard benchmark tests. These tests evaluate the model's capabilities in different tasks and domains.
Intelligence Index
62.99
Large Language Model Intelligence Level
Coding Index
54.25
Indicator of AI model performance on coding tasks
Math Index
91.33
Capability indicator in solving mathematical problems, mathematical reasoning, or performing math-related tasks
MMLU Pro
81.6
Massive Multitask Multimodal Understanding - Testing understanding of text, images, audio, and video
GPQA
69.7
Graduate Physics Questions Assessment - Testing advanced physics knowledge with diamond science-level questions
HLE
8.2
The model's comprehensive average score on the Hugging Face Open LLM Leaderboard
LiveCodeBench
71.1
Specific evaluation focused on assessing large language models' ability in real-world code writing and solving programming competition problems
SciCode
37.4
The model's capability in code generation for scientific computing or specific scientific domains
HumanEval
-
Score achieved by the AI model on the specific HumanEval benchmark test set
Math 500 Score
98
Score on the first 500 larger, more well-known mathematical benchmark tests
AIME Score
84.7
An indicator measuring an AI model's ability to solve high-difficulty mathematical competition problems (specifically AIME level)
GPT 5 Mini
openai

¥1.8
Input tokens/million
¥14.4
Output tokens/million
400k
Context Length
GPT 5 Standard
openai

¥63
Input tokens/million
¥504
Output tokens/million
400k
Context Length
GPT 5 Nano
openai

¥0.36
Input tokens/million
¥2.88
Output tokens/million
400k
Context Length
GPT 5
openai

¥9
Input tokens/million
¥72
Output tokens/million
400k
Context Length
GLM 4.5
chatglm

¥0.43
Input tokens/million
¥1.01
Output tokens/million
131k
Context Length
Gemini 2.0 Flash Lite (Preview)
google

¥0.58
Input tokens/million
¥2.16
Output tokens/million
1M
Context Length
Gemini 1.0 Pro
google

¥3.6
Input tokens/million
¥10.8
Output tokens/million
33k
Context Length
GPT 4
openai

¥216
Input tokens/million
¥432
Output tokens/million
8192
Context Length