
Devstral Medium
Mistral AI 與 All Hands AI 合作開發的高階程式碼智能體模型,專門用於軟體工程任務。在 SWE-Bench Verified 基準測試中達到 61.6% 的成績,超越 Gemini 2.5 Pro 和 GPT 4.1,但價格僅為其四分之一。支援企業級部署和自訂微調,適合需要高性能程式碼生成和多檔案編輯的複雜開發場景。
Intelligence(Relatively Weak)
Speed(Relatively Slow)
Input Supported Modalities
No
Is Reasoning Model
256,000
Context Window
128,000
Maximum Output Tokens
-
Knowledge Cutoff
Pricing
¥2.88 /M tokens
Input
¥14.4 /M tokens
Output
¥5.76 /M tokens
Blended Price
Quick Simple Comparison
Devstral Small (May '25)
¥0.1
Codestral (Jan '25)
¥0.2
Devstral Small
¥0.1
Basic Parameters
Devstral MediumTechnical Parameters
Parameter Count
Not Announced
Context Length
256.00k tokens
Training Data Cutoff
Open Source Category
Proprietary
Multimodal Support
Text Only
Throughput
137
Release Date
2025-07-10
Response Speed
97.926 tokens/s
Benchmark Scores
Below is the performance of Devstral Medium in various standard benchmark tests. These tests evaluate the model's capabilities in different tasks and domains.
Intelligence Index
38.18
Large Language Model Intelligence Level
Coding Index
31.52
Indicator of AI model performance on coding tasks
Math Index
38.7
Capability indicator in solving mathematical problems, mathematical reasoning, or performing math-related tasks
MMLU Pro
70.8
Massive Multitask Multimodal Understanding - Testing understanding of text, images, audio, and video
GPQA
49.2
Graduate Physics Questions Assessment - Testing advanced physics knowledge with diamond science-level questions
HLE
3.8
The model's comprehensive average score on the Hugging Face Open LLM Leaderboard
LiveCodeBench
33.7
Specific evaluation focused on assessing large language models' ability in real-world code writing and solving programming competition problems
SciCode
29.4
The model's capability in code generation for scientific computing or specific scientific domains
HumanEval
93.5
Score achieved by the AI model on the specific HumanEval benchmark test set
Math 500 Score
70.7
Score on the first 500 larger, more well-known mathematical benchmark tests
AIME Score
6.7
An indicator measuring an AI model's ability to solve high-difficulty mathematical competition problems (specifically AIME level)
GPT 5 Mini
openai

¥1.8
Input tokens/million
¥14.4
Output tokens/million
400k
Context Length
GPT 5 Standard
openai

¥63
Input tokens/million
¥504
Output tokens/million
400k
Context Length
GPT 5 Nano
openai

¥0.36
Input tokens/million
¥2.88
Output tokens/million
400k
Context Length
GPT 5
openai

¥9
Input tokens/million
¥72
Output tokens/million
400k
Context Length
GLM 4.5
chatglm

¥0.43
Input tokens/million
¥1.01
Output tokens/million
131k
Context Length
Gemini 2.0 Flash Lite (Preview)
google

¥0.58
Input tokens/million
¥2.16
Output tokens/million
1M
Context Length
Gemini 1.0 Pro
google

¥3.6
Input tokens/million
¥10.8
Output tokens/million
33k
Context Length
GPT 4
openai

¥216
Input tokens/million
¥432
Output tokens/million
8192
Context Length