
Claude 4 Opus
Anthropic の最高級言語モデルで、世界最高のプログラミングモデルと位置付けられています。複数のベンチマークで新記録を樹立し、SWE-bench で 72.5%、Terminal-bench で 43.2% を達成しました。200K のコンテキストウィンドウと高度なツール統合をサポートし、中上級開発者レベルの効率で 7 時間連続してプログラミング作業が可能で、最も複雑なコード開発と分析タスクに適しています。
Intelligence(Medium)
Speed(Relatively Slow)
Input Supported Modalities
Yes
Is Reasoning Model
200,000
Context Window
128,000
Maximum Output Tokens
-
Knowledge Cutoff
Pricing
¥108 /M tokens
Input
¥540 /M tokens
Output
¥216 /M tokens
Blended Price
Quick Simple Comparison
Claude 4 Sonnet
¥3
Claude 4 Opus (Extended Thinking)
¥15
Claude Opus 4.1
¥15
Basic Parameters
Claude 4 OpusTechnical Parameters
Parameter Count
Not Announced
Context Length
200.00k tokens
Training Data Cutoff
Open Source Category
Proprietary
Multimodal Support
Text, Image
Throughput
120
Release Date
2025-05-22
Response Speed
62.37,708 tokens/s
Benchmark Scores
Below is the performance of Claude 4 Opus in various standard benchmark tests. These tests evaluate the model's capabilities in different tasks and domains.
Intelligence Index
57.68
Large Language Model Intelligence Level
Coding Index
47.52
Indicator of AI model performance on coding tasks
Math Index
75.2
Capability indicator in solving mathematical problems, mathematical reasoning, or performing math-related tasks
MMLU Pro
86
Massive Multitask Multimodal Understanding - Testing understanding of text, images, audio, and video
GPQA
70.1
Graduate Physics Questions Assessment - Testing advanced physics knowledge with diamond science-level questions
HLE
5.9
The model's comprehensive average score on the Hugging Face Open LLM Leaderboard
LiveCodeBench
54.2
Specific evaluation focused on assessing large language models' ability in real-world code writing and solving programming competition problems
SciCode
40.9
The model's capability in code generation for scientific computing or specific scientific domains
HumanEval
97
Score achieved by the AI model on the specific HumanEval benchmark test set
Math 500 Score
94.1
Score on the first 500 larger, more well-known mathematical benchmark tests
AIME Score
56.3
An indicator measuring an AI model's ability to solve high-difficulty mathematical competition problems (specifically AIME level)
GPT 5 Mini
openai

¥1.8
Input tokens/million
¥14.4
Output tokens/million
400k
Context Length
GPT 5 Standard
openai

¥63
Input tokens/million
¥504
Output tokens/million
400k
Context Length
GPT 5 Nano
openai

¥0.36
Input tokens/million
¥2.88
Output tokens/million
400k
Context Length
GPT 5
openai

¥9
Input tokens/million
¥72
Output tokens/million
400k
Context Length
GLM 4.5
chatglm

¥0.43
Input tokens/million
¥1.01
Output tokens/million
131k
Context Length
Gemini 1.0 Pro
google

¥3.6
Input tokens/million
¥10.8
Output tokens/million
33k
Context Length
Gemini 2.0 Flash Lite (Preview)
google

¥0.58
Input tokens/million
¥2.16
Output tokens/million
1M
Context Length
GPT 4
openai

¥216
Input tokens/million
¥432
Output tokens/million
8192
Context Length