Deepseek R1 Distill Qwen 14B
D

Deepseek R1 Distill Qwen 14B

DeepSeek - R1は、DeepSeek - V3(合計6710億のパラメータ、各トークンで370億のパラメータが活性化)をベースに構築された初代推論モデルです。大規模強化学習(RL)を組み合わせることで、思考連鎖と推論能力を強化し、数学、コード、多段階推論タスクで優れた性能を発揮します。
Intelligence(Medium)
Speed(Relatively Slow)
Input Supported Modalities
No
Is Reasoning Model
128,000
Context Window
128,000
Maximum Output Tokens
-
Knowledge Cutoff

Pricing

- /M tokens
Input
- /M tokens
Output
¥1.44 /M tokens
Blended Price

Quick Simple Comparison

Input

Output

DeepSeek V3 0324 (Mar '25)
DeepSeek R1
¥0.55
DeepSeek R1 (Jan '25)
¥0.56

Basic Parameters

DeepSeek R1 Distill Qwen 14BTechnical Parameters
Parameter Count
14,800.0M
Context Length
128.00k tokens
Training Data Cutoff
Open Source Category
Open Weights (Permissive License)
Multimodal Support
Text Only
Throughput
0
Release Date
2025-01-20
Response Speed
75.49,411 tokens/s

Benchmark Scores

Below is the performance of DeepSeek R1 Distill Qwen 14B in various standard benchmark tests. These tests evaluate the model's capabilities in different tasks and domains.
Intelligence Index
49
Large Language Model Intelligence Level
Coding Index
30.72
Indicator of AI model performance on coding tasks
Math Index
80.77
Capability indicator in solving mathematical problems, mathematical reasoning, or performing math-related tasks
MMLU Pro
74
Massive Multitask Multimodal Understanding - Testing understanding of text, images, audio, and video
GPQA
48.4
Graduate Physics Questions Assessment - Testing advanced physics knowledge with diamond science-level questions
HLE
4.4
The model's comprehensive average score on the Hugging Face Open LLM Leaderboard
LiveCodeBench
37.6
Specific evaluation focused on assessing large language models' ability in real-world code writing and solving programming competition problems
SciCode
23.9
The model's capability in code generation for scientific computing or specific scientific domains
HumanEval
93.4
Score achieved by the AI model on the specific HumanEval benchmark test set
Math 500 Score
94.9
Score on the first 500 larger, more well-known mathematical benchmark tests
AIME Score
66.7
An indicator measuring an AI model's ability to solve high-difficulty mathematical competition problems (specifically AIME level)
AIbase
Empowering the Future, Your AI Solution Knowledge Base
© 2025AIbase