Mistral Small (Feb '24)
M

Mistral Small (Feb '24)

Mistral AI 於 2024 年 2 月發布的小型模型,在效率和性能之間找到了良好平衡。作為 Mistral 早期的重要版本,展示了該公司在小型高效模型方面的技術實力。具備良好的多語言支援和推理能力,為後續的 Small 系列發展奠定了基礎。適合資源受限但需要可靠 AI 能力的應用場景。
Intelligence(Relatively Weak)
Speed(Relatively Fast)
Input Supported Modalities
No
Is Reasoning Model
32,768
Context Window
32,768
Maximum Output Tokens
-
Knowledge Cutoff

Pricing

¥1.44 /M tokens
Input
¥4.32 /M tokens
Output
¥10.8 /M tokens
Blended Price

Quick Simple Comparison

Input

Output

Devstral Small (May '25)
¥0.1
Codestral (Jan '25)
¥0.2
Devstral Small
¥0.1

Basic Parameters

Mistral Small (Feb '24)Technical Parameters
Parameter Count
22,000.0M
Context Length
32.77k tokens
Training Data Cutoff
Open Source Category
Proprietary
Multimodal Support
Text Only
Throughput
0
Release Date
2024-02-26
Response Speed
183.73,997 tokens/s

Benchmark Scores

Below is the performance of Mistral Small (Feb '24) in various standard benchmark tests. These tests evaluate the model's capabilities in different tasks and domains.
Intelligence Index
22.92
Large Language Model Intelligence Level
Coding Index
12.27
Indicator of AI model performance on coding tasks
Math Index
28.43
Capability indicator in solving mathematical problems, mathematical reasoning, or performing math-related tasks
MMLU Pro
41.9
Massive Multitask Multimodal Understanding - Testing understanding of text, images, audio, and video
GPQA
30.2
Graduate Physics Questions Assessment - Testing advanced physics knowledge with diamond science-level questions
HLE
4.4
The model's comprehensive average score on the Hugging Face Open LLM Leaderboard
LiveCodeBench
11.1
Specific evaluation focused on assessing large language models' ability in real-world code writing and solving programming competition problems
SciCode
13.4
The model's capability in code generation for scientific computing or specific scientific domains
HumanEval
79
Score achieved by the AI model on the specific HumanEval benchmark test set
Math 500 Score
56.2
Score on the first 500 larger, more well-known mathematical benchmark tests
AIME Score
0.7
An indicator measuring an AI model's ability to solve high-difficulty mathematical competition problems (specifically AIME level)
AIbase
Empowering the Future, Your AI Solution Knowledge Base
© 2025AIbase