Phi 4 Multimodal Instruct
P

Phi 4 Multimodal Instruct

Phi-4-multimodal-instruct 是一个轻量级(55.7亿参数)的开放多模态基础模型,它利用了 Phi-3.5 和 4.0 的研究成果和数据集。它可以处理文本、图像和音频输入,并生成文本输出,支持 128K 个标记的上下文长度。通过 SFT、DPO 和 RLHF 进行增强,以提高指令遵循能力和安全性。
Intelligence(Relatively Weak)
Speed(Slow)
Input Supported Modalities
Yes
Is Reasoning Model
128,000
Context Window
128,000
Maximum Output Tokens
2024-06-01
Knowledge Cutoff

Pricing

¥0.36 /M tokens
Input
¥0.72 /M tokens
Output
- /M tokens
Blended Price

Quick Simple Comparison

Input

Output

Phi-3 Medium Instruct 14B
¥0.1
Phi-4 Mini Instruct
Phi-4 Multimodal Instruct
¥0.05

Basic Parameters

Phi-4 Multimodal InstructTechnical Parameters
Parameter Count
5,600.0M
Context Length
128.00k tokens
Training Data Cutoff
2024-06-01
Open Source Category
Open Weights (Permissive License)
Multimodal Support
Text, Image
Throughput
25
Release Date
2025-02-26
Response Speed
21.646,065 tokens/s

Benchmark Scores

Below is the performance of Phi-4 Multimodal Instruct in various standard benchmark tests. These tests evaluate the model's capabilities in different tasks and domains.
Intelligence Index
26.91
Large Language Model Intelligence Level
Coding Index
12.06
Indicator of AI model performance on coding tasks
Math Index
39.3
Capability indicator in solving mathematical problems, mathematical reasoning, or performing math-related tasks
MMLU Pro
48.5
Massive Multitask Multimodal Understanding - Testing understanding of text, images, audio, and video
GPQA
31.5
Graduate Physics Questions Assessment - Testing advanced physics knowledge with diamond science-level questions
HLE
4.4
The model's comprehensive average score on the Hugging Face Open LLM Leaderboard
LiveCodeBench
13.1
Specific evaluation focused on assessing large language models' ability in real-world code writing and solving programming competition problems
SciCode
11
The model's capability in code generation for scientific computing or specific scientific domains
HumanEval
72.9
Score achieved by the AI model on the specific HumanEval benchmark test set
Math 500 Score
69.3
Score on the first 500 larger, more well-known mathematical benchmark tests
AIME Score
9.3
An indicator measuring an AI model's ability to solve high-difficulty mathematical competition problems (specifically AIME level)
AIbase
Empowering the Future, Your AI Solution Knowledge Base
© 2025AIbase