D

Deepseek R1 Distill Qwen 1.5B

DeepSeek - R1は、DeepSeek - V3(合計6710億のパラメータ、トークンごとに370億のパラメータがアクティブ)をベースに構築された初代推論モデルです。大規模強化学習(RL)を組み合わせることで、思考連鎖と推論能力を強化し、数学、コード、および多段階推論タスクで優れた性能を発揮します。
Intelligence(Weak)
Speed(Fast)
Input Supported Modalities
No
Is Reasoning Model
128,000
Context Window
128,000
Maximum Output Tokens
-
Knowledge Cutoff
Pricing
- /M tokens
Input
- /M tokens
Output
¥1.3 /M tokens
Blended Price
Quick Simple Comparison
DeepSeek R1 Distill Llama 70B
¥0.1
DeepSeek R1 Distill Qwen 32B
¥0.12
DeepSeek V3 0324 (Mar' 25)
Basic Parameters
GPT-4.1 Technical Parameters
Parameter Count
1,780.0M
Context Length
128.00k tokens
Training Data Cutoff
Open Source Category
Open Weights (Permissive License)
Multimodal Support
Text Only
Throughput
0
Release Date
2025-01-20
Response Speed
383.73,148 tokens/s
Benchmark Scores
Below is the performance of claude-monet in various standard benchmark tests. These tests evaluate the model's capabilities in different tasks and domains.
Intelligence Index
1917
Large Language Model Intelligence Level
Coding Index
680
Indicator of AI model performance on coding tasks
Math Index
-
Capability indicator in solving mathematical problems, mathematical reasoning, or performing math-related tasks
MMLU Pro
26.9
Massive Multitask Multimodal Understanding - Testing understanding of text, images, audio, and video
GPQA
9.8
Graduate Physics Questions Assessment - Testing advanced physics knowledge with diamond science-level questions
HLE
3.3
The model's comprehensive average score on the Hugging Face Open LLM Leaderboard
LiveCodeBench
7
Specific evaluation focused on assessing large language models' ability in real-world code writing and solving programming competition problems
SciCode
6.6
The model's capability in code generation for scientific computing or specific scientific domains
HumanEval
45.4
Score achieved by the AI model on the specific HumanEval benchmark test set
Math 500 Score
68.7
Score on the first 500 larger, more well-known mathematical benchmark tests
AIME Score
17.7
An indicator measuring an AI model's ability to solve high-difficulty mathematical competition problems (specifically AIME level)
AIbase
Empowering the Future, Your AI Solution Knowledge Base
© 2025AIbase