Gemini 2.0 Flash Thinking Experimental (Jan '25)
G

Gemini 2.0 Flash Thinking Experimental (Jan '25)

Gemini 2.0 フラッシュシンキングは、性能と説明可能性を向上させるために思考過程を示すことができる強化された推論モデルです。速度と性能を兼ね備えた Gemini 2.0 フラッシュシンキングは、科学や数学の分野でも優れた性能を発揮し、複雑な問題を解決するために思考過程を示すことができます。
Intelligence(Medium)
Speed(Slow)
Input Supported Modalities
Yes
Is Reasoning Model
1,000,000
Context Window
65,536
Maximum Output Tokens
2024-08-01
Knowledge Cutoff

Pricing

- /M tokens
Input
- /M tokens
Output
- /M tokens
Blended Price

Quick Simple Comparison

Gemini 1.5 Pro (May '24)
¥2.5
Gemini 2.0 Pro Experimental (Feb '25)
Gemini 1.5 Pro (Sep '24)
¥2.5

Basic Parameters

Gemini 2.0 Flash Thinking Experimental (Jan '25)Technical Parameters
Parameter Count
Not Announced
Context Length
1.0M tokens
Training Data Cutoff
2024-08-01
Open Source Category
Proprietary
Multimodal Support
Text, Image
Throughput
Release Date
2025-01-21
Response Speed
0 tokens/s

Benchmark Scores

Below is the performance of Gemini 2.0 Flash Thinking Experimental (Jan '25) in various standard benchmark tests. These tests evaluate the model's capabilities in different tasks and domains.
Intelligence Index
52.33
Large Language Model Intelligence Level
Coding Index
32.46
Indicator of AI model performance on coding tasks
Math Index
72.2
Capability indicator in solving mathematical problems, mathematical reasoning, or performing math-related tasks
MMLU Pro
79.8
Massive Multitask Multimodal Understanding - Testing understanding of text, images, audio, and video
GPQA
70.1
Graduate Physics Questions Assessment - Testing advanced physics knowledge with diamond science-level questions
HLE
7.1
The model's comprehensive average score on the Hugging Face Open LLM Leaderboard
LiveCodeBench
32.1
Specific evaluation focused on assessing large language models' ability in real-world code writing and solving programming competition problems
SciCode
32.9
The model's capability in code generation for scientific computing or specific scientific domains
HumanEval
-
Score achieved by the AI model on the specific HumanEval benchmark test set
Math 500 Score
94.4
Score on the first 500 larger, more well-known mathematical benchmark tests
AIME Score
50
An indicator measuring an AI model's ability to solve high-difficulty mathematical competition problems (specifically AIME level)
AIbase
Empowering the Future, Your AI Solution Knowledge Base
© 2025AIbase