🚀 mT5-m2o-russian-CrossSum
このリポジトリには、CrossSum データセットのすべてのクロス言語ペアでファインチューニングされた多対一(m2o)のmT5チェックポイントが含まれています。このモデルは、任意の言語で書かれたテキストをロシア語で要約しようとします。ファインチューニングの詳細とスクリプトについては、論文 と 公式リポジトリ を参照してください。
🚀 クイックスタート
✨ 主な機能
このモデルは、多言語のテキストをロシア語で要約することができます。
📦 インストール
このモデルを使用するには、transformers
ライブラリが必要です。以下のコードでインストールできます。
pip install transformers
💻 使用例
基本的な使用法
import re
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
article_text = """Videos that say approved vaccines are dangerous and cause autism, cancer or infertility are among those that will be taken down, the company said. The policy includes the termination of accounts of anti-vaccine influencers. Tech giants have been criticised for not doing more to counter false health information on their sites. In July, US President Joe Biden said social media platforms were largely responsible for people's scepticism in getting vaccinated by spreading misinformation, and appealed for them to address the issue. YouTube, which is owned by Google, said 130,000 videos were removed from its platform since last year, when it implemented a ban on content spreading misinformation about Covid vaccines. In a blog post, the company said it had seen false claims about Covid jabs "spill over into misinformation about vaccines in general". The new policy covers long-approved vaccines, such as those against measles or hepatitis B. "We're expanding our medical misinformation policies on YouTube with new guidelines on currently administered vaccines that are approved and confirmed to be safe and effective by local health authorities and the WHO," the post said, referring to the World Health Organization."""
model_name = "csebuetnlp/mT5_m2o_russian_crossSum"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
input_ids = tokenizer(
[WHITESPACE_HANDLER(article_text)],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=512
)["input_ids"]
output_ids = model.generate(
input_ids=input_ids,
max_length=84,
no_repeat_ngram_size=2,
num_beams=4
)[0]
summary = tokenizer.decode(
output_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
)
print(summary)
📄 ライセンス
このモデルは、cc-by-nc-sa-4.0
ライセンスの下で提供されています。
📚 ドキュメント
引用
このモデルを使用する場合は、以下の論文を引用してください。
@article{hasan2021crosssum,
author = {Tahmid Hasan and Abhik Bhattacharjee and Wasi Uddin Ahmad and Yuan-Fang Li and Yong-bin Kang and Rifat Shahriyar},
title = {CrossSum: Beyond English-Centric Cross-Lingual Abstractive Text Summarization for 1500+ Language Pairs},
journal = {CoRR},
volume = {abs/2112.08804},
year = {2021},
url = {https://arxiv.org/abs/2112.08804},
eprinttype = {arXiv},
eprint = {2112.08804}
}
関連情報
属性 |
详情 |
タグ |
summarization、mT5 |
対応言語 |
am、ar、az、bn、my、zh、en、fr、gu、ha、hi、ig、id、ja、rn、ko、ky、mr、ne、om、ps、fa、pcm、pt、pa、ru、gd、sr、si、so、es、sw、ta、te、th、ti、tr、uk、ur、uz、vi、cy、yo |
ライセンス |
cc-by-nc-sa-4.0 |