🚀 stjiris/t5-portuguese-legal-summarization
法的分野向けのポルトガル語T5モデルで、文章の要約を行うことができます。
この作品は、Project IRIS の一環として開発されました。
論文: A Semantic Search System for Supremo Tribunal de Justiça


このモデルは、「unicamp-dl/ptt5-base-portuguese-vocab」のT5モデルをファインチューニングしたものです。様々な判例とその要約を使用して学習を行いました。
🚀 クイックスタート
このモデルは、法的分野の文章を要約するためにファインチューニングされたT5モデルです。以下に、HuggingFaceのtransformersライブラリを使用した使用例を示します。
💻 使用例
基本的な使用法
from transformers import T5Tokenizer, T5ForConditionalGeneration
model_checkpoint = "stjiris/t5-portuguese-legal-summarization"
t5_model = T5ForConditionalGeneration.from_pretrained(model_checkpoint)
t5_tokenizer = T5Tokenizer.from_pretrained(model_checkpoint)
preprocess_text = "These are some big words and text and words and text, again, that we want to summarize"
t5_prepared_Text = "summarize: "+preprocess_text
tokenized_text = t5_tokenizer.encode(t5_prepared_Text, return_tensors="pt").to(device)
summary_ids = t5_model.generate(tokenized_text,
num_beams=4,
no_repeat_ngram_size=2,
min_length=512,
max_length=1024,
early_stopping=True)
output = t5_tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print ("\n\nSummarized text: \n",output)
📄 ライセンス
このプロジェクトはMITライセンスの下で公開されています。
📚 引用
貢献者
@rufimelo99
この作品を使用する場合は、以下のように引用してください。
@InProceedings{MeloSemantic,
author="Melo, Rui
and Santos, Pedro A.
and Dias, Jo{\~a}o",
editor="Moniz, Nuno
and Vale, Zita
and Cascalho, Jos{\'e}
and Silva, Catarina
and Sebasti{\~a}o, Raquel",
title="A Semantic Search System for the Supremo Tribunal de Justi{\c{c}}a",
booktitle="Progress in Artificial Intelligence",
year="2023",
publisher="Springer Nature Switzerland",
address="Cham",
pages="142--154",
abstract="Many information retrieval systems use lexical approaches to retrieve information. Such approaches have multiple limitations, and these constraints are exacerbated when tied to specific domains, such as the legal one. Large language models, such as BERT, deeply understand a language and may overcome the limitations of older methodologies, such as BM25. This work investigated and developed a prototype of a Semantic Search System to assist the Supremo Tribunal de Justi{\c{c}}a (Portuguese Supreme Court of Justice) in its decision-making process. We built a Semantic Search System that uses specially trained BERT models (Legal-BERTimbau variants) and a Hybrid Search System that incorporates both lexical and semantic techniques by combining the capabilities of BM25 and the potential of Legal-BERTimbau. In this context, we obtained a {\$}{\$}335{\backslash}{\%}{\$}{\$}335{\%}increase on the discovery metric when compared to BM25 for the first query result. This work also provides information on the most relevant techniques for training a Large Language Model adapted to Portuguese jurisprudence and introduces a new technique of Metadata Knowledge Distillation.",
isbn="978-3-031-49011-8"
}
@article{ptt5_2020,
title={PTT5: Pretraining and validating the T5 model on Brazilian Portuguese data},
author={Carmo, Diedre and Piau, Marcos and Campiotti, Israel and Nogueira, Rodrigo and Lotufo, Roberto},
journal={arXiv preprint arXiv:2008.09144},
year={2020}
}