
PALM 2
Google の PaLM-2 大規模言語モデルで、PaLM を大幅に改善しました。より強力な推論能力、多言語サポート、コード生成能力を備えています。このモデルは Google の複数の AI 製品の技術的基盤を提供し、学術界と産業界に重要な影響を与えました。強力な基本言語能力が必要な様々なアプリケーションに適しており、研究から製品開発までサポートを提供できます。
インテリジェンス(比較的弱い)
速度(遅い)
入力サポートモダリティ
はい
推論モデルかどうか
8,000
コンテキストウィンドウ
-
最大出力トークン
-
知識カットオフ
価格設定
- /M tokens
入力
- /M tokens
出力
- /M tokens
混合価格
クイック簡易比較
Gemini 1.5 Pro (May '24)
¥2.5
Gemini 2.0 Pro Experimental (Feb '25)
Gemini 1.5 Pro (Sep '24)
¥2.5
基本パラメータ
PALM-2技術パラメータ
パラメータ数
未発表
コンテキスト長
8,000 tokens
トレーニングデータカットオフ
オープンソースカテゴリ
Proprietary
マルチモーダルサポート
テキストのみ
スループット
リリース日
2023-05-10
応答速度
0 tokens/s
ベンチマークスコア
以下はPALM-2の様々な標準ベンチマークテストでのパフォーマンスです。これらのテストは、異なるタスクやドメインにおけるモデルの能力を評価します。
インテリジェンス指数
21
大規模言語モデルインテリジェンスレベル
コーディング指数
-
コーディングタスクにおけるAIモデルのパフォーマンス指標
数学指数
-
数学的問題の解決、数学的推論、または数学関連タスクの実行における能力指標
MMLU Pro
-
大規模マルチタスクマルチモーダル理解 - テキスト、画像、音声、ビデオの理解をテスト
GPQA
-
大学院物理学問題評価 - ダイヤモンド科学レベルの問題で高度な物理学知識をテスト
HLE
-
Hugging Face Open LLMリーダーボードにおけるモデルの包括的な平均スコア
LiveCodeBench
-
実世界のコード作成とプログラミングコンテスト問題解決における大規模言語モデルの能力を評価する特定の評価
SciCode
-
科学計算または特定の科学分野のコード生成におけるモデルの能力
HumanEval
-
特定のHumanEvalベンチマークテストセットでAIモデルが達成したスコア
Math 500スコア
-
最初の500の大規模でよく知られた数学ベンチマークテストのスコア
AIMEスコア
-
高難度の数学競技問題(特にAIMEレベル)を解決するAIモデルの能力を測定する指標
おすすめAIモデル
GPT 5 Mini
openai

¥1.8
入力トークン/百万
¥14.4
出力トークン/百万
400k
コンテキスト長
GPT 5 Standard
openai

¥63
入力トークン/百万
¥504
出力トークン/百万
400k
コンテキスト長
GPT 5 Nano
openai

¥0.36
入力トークン/百万
¥2.88
出力トークン/百万
400k
コンテキスト長
GPT 5
openai

¥9
入力トークン/百万
¥72
出力トークン/百万
400k
コンテキスト長
GLM 4.5
chatglm

¥0.43
入力トークン/百万
¥1.01
出力トークン/百万
131k
コンテキスト長
Gemini 1.0 Pro
google

¥3.6
入力トークン/百万
¥10.8
出力トークン/百万
33k
コンテキスト長
Gemini 2.0 Flash Lite (Preview)
google

¥0.58
入力トークン/百万
¥2.16
出力トークン/百万
1M
コンテキスト長
GPT 4
openai

¥216
入力トークン/百万
¥432
出力トークン/百万
8192
コンテキスト長