
Llama 2 Chat 7B
Meta Llama 2 シリーズの 7B パラメータ対話バージョンで、対話タスク向けに最適化されています。人間のフィードバック強化学習によってファインチューニングされており、対話品質と安全性において優れた性能を発揮します。オープンソースモデルとして、研究コミュニティと開発者に高品質な対話 AI の基盤を提供します。チャットボットからスマートアシスタントまで、様々な対話アプリケーションの開発に適しています。
インテリジェンス(弱い)
速度(中程度)
入力サポートモダリティ
はい
推論モデルかどうか
4,096
コンテキストウィンドウ
-
最大出力トークン
-
知識カットオフ
価格設定
- /M tokens
入力
- /M tokens
出力
¥0.72 /M tokens
混合価格
クイック簡易比較
Llama 4 Scout
¥0.08
Llama 4 Maverick
¥0.17
Llama 3.1 Instruct 8B
¥0.03
基本パラメータ
Llama 2 Chat 7B技術パラメータ
パラメータ数
未発表
コンテキスト長
4,096 tokens
トレーニングデータカットオフ
オープンソースカテゴリ
Open Weights (Permissive License)
マルチモーダルサポート
テキストのみ
スループット
リリース日
2023-07-18
応答速度
128.34,349 tokens/s
ベンチマークスコア
以下はLlama 2 Chat 7Bの様々な標準ベンチマークテストでのパフォーマンスです。これらのテストは、異なるタスクやドメインにおけるモデルの能力を評価します。
インテリジェンス指数
8.25
大規模言語モデルインテリジェンスレベル
コーディング指数
0.11
コーディングタスクにおけるAIモデルのパフォーマンス指標
数学指数
2.93
数学的問題の解決、数学的推論、または数学関連タスクの実行における能力指標
MMLU Pro
16.4
大規模マルチタスクマルチモーダル理解 - テキスト、画像、音声、ビデオの理解をテスト
GPQA
22.7
大学院物理学問題評価 - ダイヤモンド科学レベルの問題で高度な物理学知識をテスト
HLE
5.8
Hugging Face Open LLMリーダーボードにおけるモデルの包括的な平均スコア
LiveCodeBench
0.2
実世界のコード作成とプログラミングコンテスト問題解決における大規模言語モデルの能力を評価する特定の評価
SciCode
-
科学計算または特定の科学分野のコード生成におけるモデルの能力
HumanEval
-
特定のHumanEvalベンチマークテストセットでAIモデルが達成したスコア
Math 500スコア
5.9
最初の500の大規模でよく知られた数学ベンチマークテストのスコア
AIMEスコア
-
高難度の数学競技問題(特にAIMEレベル)を解決するAIモデルの能力を測定する指標
GPT 5 Mini
openai

¥1.8
入力トークン/百万
¥14.4
出力トークン/百万
400k
コンテキスト長
GPT 5 Standard
openai

¥63
入力トークン/百万
¥504
出力トークン/百万
400k
コンテキスト長
GPT 5 Nano
openai

¥0.36
入力トークン/百万
¥2.88
出力トークン/百万
400k
コンテキスト長
GPT 5
openai

¥9
入力トークン/百万
¥72
出力トークン/百万
400k
コンテキスト長
GLM 4.5
chatglm

¥0.43
入力トークン/百万
¥1.01
出力トークン/百万
131k
コンテキスト長
Gemini 1.0 Pro
google

¥3.6
入力トークン/百万
¥10.8
出力トークン/百万
33k
コンテキスト長
Gemini 2.0 Flash Lite (Preview)
google

¥0.58
入力トークン/百万
¥2.16
出力トークン/百万
1M
コンテキスト長
GPT 4
openai

¥216
入力トークン/百万
¥432
出力トークン/百万
8192
コンテキスト長