Mistral Small 24B Instruct 2501 Quantized.w8a8
Model Overview
Model Features
Model Capabilities
Use Cases
đ Mistral-Small-24B-Instruct-2501-quantized.w8a8
This is a quantized model based on Mistral-Small-24B-Instruct-2501, optimized for various use - cases with reduced memory requirements and improved throughput.
đ Documentation
Model Overview
- Model Architecture: Mistral3ForConditionalGeneration
- Input: Text / Image
- Output: Text
- Model Optimizations:
- Activation quantization: INT8
- Weight quantization: INT8
- Intended Use Cases: Ideal for:
- Fast - response conversational agents.
- Low - latency function calling.
- Subject matter experts via fine - tuning.
- Local inference for hobbyists and organizations handling sensitive data.
- Programming and math reasoning.
- Long document understanding.
- Visual understanding.
- Out - of - scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model.
- Release Date: 03/03/2025
- Version: 1.0
- Model Developers: Red Hat (Neural Magic)
Model Optimizations
This model was obtained by quantizing activations and weights of [Mistral - Small - 24B - Instruct - 2501](https://huggingface.co/mistralai/Mistral - Small - 24B - Instruct - 2501) to INT8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix - multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per - channel scheme, whereas activations are quantized with a symmetric dynamic per - token scheme. A combination of the SmoothQuant and GPTQ algorithms is applied for quantization, as implemented in the [llm - compressor](https://github.com/vllm - project/llm - compressor) library.
đ Quick Start
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoProcessor
model_id = "RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-quantized.w8a8"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
processor = AutoProcessor.from_pretrained(model_id)
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
prompts = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM also supports OpenAI - compatible serving. See the documentation for more details.
Deployment on Different Platforms
Deploy on Red Hat AI Inference Server
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
--ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768 \
--enforce-eager --model RedHatAI/Mistral-Small-24B-Instruct-2501-quantized.w8a8
See Red Hat AI Inference Server documentation for more details.
Deploy on Red Hat Enterprise Linux AI
# Download model from Red Hat Registry via docker
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
ilab model download --repository docker://registry.redhat.io/rhelai1/mistral-small-24b-instruct-2501-quantized-w8a8:1.5
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/mistral-small-24b-instruct-2501-quantized-w8a8
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/mistral-small-24b-instruct-2501-quantized-w8a8
See Red Hat Enterprise Linux AI documentation for more details.
Deploy on Red Hat Openshift AI
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
annotations:
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
labels:
opendatahub.io/dashboard: 'true'
spec:
annotations:
prometheus.io/port: '8080'
prometheus.io/path: '/metrics'
multiModel: false
supportedModelFormats:
- autoSelect: true
name: vLLM
containers:
- name: kserve-container
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
command:
- python
- -m
- vllm.entrypoints.openai.api_server
args:
- "--port=8080"
- "--model=/mnt/models"
- "--served-model-name={{.Name}}"
env:
- name: HF_HOME
value: /tmp/hf_home
ports:
- containerPort: 8080
protocol: TCP
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
annotations:
openshift.io/display-name: mistral-small-24b-instruct-2501-quantized-w8a8 # OPTIONAL CHANGE
serving.kserve.io/deploymentMode: RawDeployment
name: mistral-small-24b-instruct-2501-quantized-w8a8 # specify model name. This value will be used to invoke the model in the payload
labels:
opendatahub.io/dashboard: 'true'
spec:
predictor:
maxReplicas: 1
minReplicas: 1
model:
modelFormat:
name: vLLM
name: ''
resources:
limits:
cpu: '2' # this is model specific
memory: 8Gi # this is model specific
nvidia.com/gpu: '1' # this is accelerator specific
requests: # same comment for this block
cpu: '1'
memory: 4Gi
nvidia.com/gpu: '1'
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
storageUri: oci://registry.redhat.io/rhelai1/modelcar-mistral-small-24b-instruct-2501-quantized-w8a8:1.5
tolerations:
- effect: NoSchedule
key: nvidia.com/gpu
operator: Exists
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
-H "Content-Type: application/json" \
-d '{
"model": "mistral-small-24b-instruct-2501-quantized-w8a8",
"stream": true,
"stream_options": {
"include_usage": true
},
"max_tokens": 1,
"messages": [
{
"role": "user",
"content": "How can a bee fly when its wings are so small?"
}
]
}'
See Red Hat Openshift AI documentation for more details.
đ§ Technical Details
Creation details
This model was created with [llm - compressor](https://github.com/vllm - project/llm - compressor) by running the code snippet below.from transformers import AutoTokenizer, AutoModelForCausalLM
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.modifiers.smoothquant import SmoothQuantModifier
from llmcompressor.transformers import oneshot
from datasets import load_dataset
# Load model
model_stub = "mistralai/Mistral-Small-24B-Instruct-2501"
model_name = model_stub.split("/")[-1]
num_samples = 1024
max_seq_len = 8192
tokenizer = AutoTokenizer.from_pretrained(model_stub)
model = AutoModelForCausalLM.from_pretrained(
model_stub,
device_map="auto",
torch_dtype="auto",
)
# Data processing
def preprocess_text(example):
text = tokenizer.apply_chat_template(example["messages"], tokenize=False, add_generation_prompt=False)
return tokenizer(text, padding=False, max_length=max_seq_len, truncation=True)
ds = load_dataset("neuralmagic/calibration", name="LLM", split="train").select(range(num_samples))
ds = ds.map(preprocess_text, remove_columns=ds.column_names)
# Configure the quantization algorithm and scheme
recipe = [
SmoothQuantModifier(
smoothing_strength=0.9,
mappings=[
[["re:.*q_proj", "re:.*k_proj", "re:.*v_proj"], "re:.*input_layernorm"],
[["re:.*gate_proj", "re:.*up_proj"], "re:.*post_attention_layernorm"],
[["re:.*down_proj"], "re:.*up_proj"],
],
),
GPTQModifier(
ignore=["lm_head"],
sequential_targets=["MistralDecoderLayer"],
dampening_frac=0.1,
targets="Linear",
scheme="W8A8",
),
]
# Apply quantization
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples
)
# Save to disk in compressed-tensors format
save_path = model_name + "-quantized.w8a8"
model.save_pretrained(save_path)
processor.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
đ Evaluation
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open - llm - leaderboard - old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open - llm - leaderboard/open_llm_leaderboard#/), using the following commands:
OpenLLM Leaderboard V1:
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Mistral-Small-24B-Instruct-2501-FP8-Dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
OpenLLM Leaderboard V2:
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Mistral-Small-24B-Instruct-2501-FP8-Dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--write_out \
--batch_size auto \
--output_path output_dir \
--show_config
Accuracy
OpenLLM Leaderboard V1 evaluation scores
Property | Details |
---|---|
ARC - Challenge (Acc - Norm, 25 - shot) | mistralai/Mistral - Small - 24B - Instruct - 2501: 72.18 nm - testing/Mistral - Small - 24B - Instruct - 2501 - quantized.w8a8: 68.86 |
GSM8K (Strict - Match, 5 - shot) | mistralai/Mistral - Small - 24B - Instruct - 2501: 90.14 nm - testing/Mistral - Small - 24B - Instruct - 2501 - quantized.w8a8: 90.00 |
HellaSwag (Acc - Norm, 10 - shot) | mistralai/Mistral - Small - 24B - Instruct - 2501: 85.05 nm - testing/Mistral - Small - 24B - Instruct - 2501 - quantized.w8a8: 85.06 |
MMLU (Acc, 5 - shot) | mistralai/Mistral - Small - 24B - Instruct - 2501: 80.69 nm - testing/Mistral - Small - 24B - Instruct - 2501 - quantized.w8a8: 80.25 |
TruthfulQA (MC2, 0 - shot) | mistralai/Mistral - Small - 24B - Instruct - 2501: 65.55 nm - testing/Mistral - Small - 24B - Instruct - 2501 - quantized.w8a8: 65.69 |
Winogrande (Acc, 5 - shot) | mistralai/Mistral - Small - 24B - Instruct - 2501: 83.11 nm - testing/Mistral - Small - 24B - Instruct - 2501 - quantized.w8a8: 81.69 |
Average Score | mistralai/Mistral - Small - 24B - Instruct - 2501: 79.45 nm - testing/Mistral - Small - 24B - Instruct - 2501 - quantized.w8a8: 78.59 |
Recovery (%) | mistralai/Mistral - Small - 24B - Instruct - 2501: 100.00 nm - testing/Mistral - Small - 24B - Instruct - 2501 - quantized.w8a8: 98.92 |
đ License
This project is licensed under the Apache - 2.0 license.

