🚀 A.X 4.0 Light
A.X 4.0 Light is a lightweight large language model optimized for Korean - language understanding and enterprise deployment. It offers high - performance language processing capabilities and is suitable for various business scenarios.
✨ Features
- Superior Korean Proficiency: Achieved a score of 78.3 on [KMMLU](https://huggingface.co/datasets/HAERAE - HUB/KMMLU), outperforming GPT - 4o (72.5).
- Deep Cultural Understanding: Scored 83.5 on CLIcK, surpassing GPT - 4o (80.2).
- Efficient Token Usage: Uses approximately 33% fewer tokens than GPT - 4o for the same Korean input.
- Deployment Flexibility: Available in both a 72B - parameter standard model (A.X 4.0) and a 7B lightweight version (A.X 4.0 Light).
- Long Context Handling: Supports up to 131,072 tokens (Lightweight model supports up to 16,384 tokens length).
📊 Performance
Model Performance
Benchmarks |
A.X 4.0 |
Qwen3 - 235B - A22B (w/o reasoning) |
Qwen2.5 - 72B |
GPT - 4o |
Knowledge - KMMLU |
78.32 |
73.64 |
66.44 |
72.51 |
Knowledge - CLIcK |
83.51 |
74.55 |
72.59 |
80.22 |
Knowledge - KoBALT |
47.30 |
41.57 |
37.00 |
44.00 |
Knowledge - MMLU |
86.62 |
87.37 |
85.70 |
88.70 |
General - Ko - MT - Bench |
86.69 |
88.00 |
82.69 |
88.44 |
General - MT - Bench |
83.25 |
86.56 |
93.50 |
88.19 |
General - LiveBench2024.11 |
52.30 |
64.50 |
54.20 |
52.19 |
Instruction Following - Ko - IFEval |
77.96 |
77.53 |
77.07 |
75.38 |
Instruction Following - IFEval |
86.05 |
85.77 |
86.54 |
83.86 |
Math - HRM8K |
48.55 |
54.52 |
46.37 |
43.27 |
Math - MATH |
74.28 |
72.72 |
77.00 |
72.38 |
Code - HumanEval+ |
79.27 |
79.27 |
81.71 |
86.00 |
Code - MBPP+ |
73.28 |
70.11 |
75.66 |
75.10 |
Code - LiveCodeBench2024.10~2025.04 |
26.07 |
33.09 |
27.58 |
29.30 |
Long Context - LongBench<128K |
56.70 |
49.40 |
45.60 |
47.50 |
Tool - use - FunctionChatBench |
85.96 |
82.43 |
88.30 |
95.70 |
Lightweight Model Performance
Benchmarks |
A.X 4.0 Light |
Qwen3 - 8B (w/o reasoning) |
Qwen2.5 - 7B |
EXAONE - 3.5 - 7.8B |
Kanana - 1.5 - 8B |
Knowledge - KMMLU |
64.15 |
63.53 |
49.56 |
53.76 |
48.28 |
Knowledge - CLIcK |
68.05 |
62.71 |
60.56 |
64.30 |
61.30 |
Knowledge - KoBALT |
30.29 |
26.57 |
21.57 |
21.71 |
23.14 |
Knowledge - MMLU |
75.43 |
82.89 |
75.40 |
72.20 |
68.82 |
General - Ko - MT - Bench |
79.50 |
64.06 |
61.31 |
81.06 |
76.30 |
General - MT - Bench |
81.56 |
65.69 |
79.37 |
83.50 |
77.60 |
General - LiveBench |
37.10 |
50.20 |
37.00 |
40.20 |
29.40 |
Instruction Following - Ko - IFEval |
72.99 |
73.39 |
60.73 |
65.01 |
69.96 |
Instruction Following - IFEval |
84.68 |
85.38 |
76.73 |
82.61 |
80.11 |
Math - HRM8K |
40.12 |
52.50 |
35.13 |
31.88 |
30.87 |
Math - MATH |
68.88 |
71.48 |
65.58 |
63.20 |
59.28 |
Code - HumanEval+ |
75.61 |
77.44 |
74.39 |
76.83 |
76.83 |
Code - MBPP+ |
67.20 |
62.17 |
68.50 |
64.29 |
67.99 |
Code - LiveCodeBench |
18.03 |
23.93 |
16.62 |
17.98 |
16.52 |
🚀 Quick Start
with HuggingFace Transformers
transformers>=4.46.0
or the latest version is required to use skt/A.X - 4.0 - Light
pip install transformers>=4.46.0
Example Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "skt/A.X-4.0-Light"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
{"role": "system", "content": "당신은 사용자가 제공하는 영어 문장들을 한국어로 번역하는 AI 전문가입니다."},
{"role": "user", "content": "The first human went into space and orbited the Earth on April 12, 1961."},
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(
input_ids,
max_new_tokens=128,
do_sample=False,
)
len_input_prompt = len(input_ids[0])
response = tokenizer.decode(output[0][len_input_prompt:], skip_special_tokens=True)
print(response)
with vLLM
vllm>=v0.6.4.post1
or the latest version is required to use tool - use function
pip install vllm>=v0.6.4.post1
VLLM_OPTION="--enable-auto-tool-choice --tool-call-parser hermes"
vllm serve skt/A.X-4.0-Light $VLLM_OPTION
Example Usage
from openai import OpenAI
def call(messages, model):
completion = client.chat.completions.create(
model=model,
messages=messages,
)
print(completion.choices[0].message)
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="api_key"
)
model = "skt/A.X-4.0-Light"
messages = [{"role": "user", "content": "에어컨 여름철 적정 온도는? 한줄로 답변해줘"}]
call(messages, model)
messages = [{"role": "user", "content": "What is the appropriate temperature for air conditioning in summer? Response in a single sentence."}]
call(messages, model)
Examples for tool - use
from openai import OpenAI
def call(messages, model):
completion = client.chat.completions.create(
model=model,
messages=messages,
tools=tools
)
print(completion.choices[0].message)
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="api_key"
)
model = "skt/A.X-4.0-Light"
calculate_discount = {
"type": "function",
"function": {
"name": "calculate_discount",
"description": "원가격과 할인율(퍼센트 단위)을 입력받아 할인된 가격을계산한다.",
"parameters": {
"type": "object",
"properties": {
"original_price": {
"type": "number",
"description": "상품의 원래 가격"
},
"discount_percentage": {
"type": "number",
"description": "적용할 할인율(예: 20% 할인의 경우 20을 입력)"
}
},
"required": ["original_price", "discount_percentage"]
}
}
}
get_exchange_rate = {
"type": "function",
"function": {
"name": "get_exchange_rate",
"description": "두 통화 간의 환율을 가져온다.",
"parameters": {
"type": "object",
"properties": {
"base_currency": {
"type": "string",
"description": "The currency to convert from."
},
"target_currency": {
"type": "string",
"description": "The currency to convert to."
}
},
"required": ["base_currency", "target_currency"]
}
}
}
tools = [calculate_discount, get_exchange_rate]
messages = [{"role": "user", "content": "우리가 뭘 사야되는데 원래 57600원인데 직원할인 받을 수 있거든? 할인가좀 계산해줘"}]
call(messages, model)
messages = [
{"role": "user", "content": "우리가 뭘 사야되는데 원래 57600원인데 직원할인 받을 수 있거든? 할인가좀 계산해줘"},
{"role": "assistant", "content": "할인율을 알려주시겠습니까?"},
{"role": "user", "content": "15% 할인 받을 수 있어."},
]
call(messages, model)
messages = [
{"role": "user", "content": "우리가 뭘 사야되는데 원래 57600원인데 직원할인 받을 수 있거든? 할인가좀 계산해줘"},
{"role": "assistant", "content": "할인율을 알려주시겠습니까?"},
{"role": "user", "content": "15% 할인 받을 수 있어."},
{"role": "tool", "tool_call_id": "random_id", "name": "calculate_discount", "content": "{\"original_price\": 57600, \"discount_percentage\": 15, \"discounted_price\": 48960.0}"}
]
call(messages, model)
📄 License
The A.X 4.0 Light
models are licensed under Apache License 2.0
.
📖 Citation
@article{SKTAdotX4Light,
title={A.X 4.0 Light},
author={SKT AI Model Lab},
year={2025},
url={https://huggingface.co/skt/A.X-4.0-Light}
}
📞 Contact