đ ThinkAgain1.5
ThinkAgain1.5 is a powerful language model with natural reasoning and tool - calling support, offering a great experience in multi - language scenarios.
đ Quick Start
This section provides a quick start guide on how to use the ThinkAgain1.5 model.
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
MAX_REASONING_TOKENS = 4096
MAX_RESPONSE_TOKENS = 1024
model_name = "beyoru/ThinkAgain1.5"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = []
def stream_output(output_text):
for char in output_text:
print(char, end="", flush=True)
while True:
prompt = input("USER: ")
messages.append({"role": "user", "content": prompt})
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS)
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
messages.append({"role": "reasoning", "content": reasoning_output})
print("REASONING: ", end="")
stream_output(reasoning_output)
print()
response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device)
response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS)
response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True)
messages.append({"role": "assistant", "content": response_output})
print("ASSISTANT: ", end="")
stream_output(response_output)
print()
⨠Features
- Natural and Smarter Reasoning: The model can perform natural and intelligent reasoning.
- No System Prompt Training: It doesn't rely on system prompt training.
- LoRA Training: Conducted LoRA training with a rank of 16 and an alpha of 16.
- Tool Calling Support: Supports tool - calling functionality.
- Multi - language Support: Supports multiple languages including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, and Arabic.
đ Documentation
Model detail
- Reasoning: It can reason naturally and more intelligently.
- Training: No system prompt training was used. LoRA training was carried out with a rank of 16 and an alpha of 16.
- Functionality: It supports tool calling.
- Caution: Quantizing this model may not yield the best performance.
Model Information
Property |
Details |
Base Model |
Qwen/Qwen2.5 - 7B - Instruct |
Tags |
text - generation - inference, transformers, qwen2, trl, sft |
License |
apache - 2.0 |
Supported Languages |
Chinese (zho), English (eng), French (fra), Spanish (spa), Portuguese (por), German (deu), Italian (ita), Russian (rus), Japanese (jpn), Korean (kor), Vietnamese (vie), Thai (tha), Arabic (ara) |
đ License
This model is licensed under the apache - 2.0
license.