🚀 simpletuner-lora
This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev, which is designed for text-to-image and image-to-image tasks.
Model Information
Property |
Details |
Base Model |
black-forest-labs/FLUX.1-dev |
License |
other |
Pipeline Tag |
text-to-image |
Inference |
true |
Tags
- flux
- flux-diffusers
- text-to-image
- image-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- standard
🚀 Quick Start
Validation Settings
The main validation prompt used during training was:
A 2D vfx of flame effect in red and yellow, glazing against black background
The validation settings are as follows:
- CFG:
3.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
1024x1024
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training Settings
-
Training epochs: 0
-
Training steps: 1000
-
Learning rate: 0.0001
- Learning rate schedule: polynomial
- Warmup steps: 100
-
Max grad value: 2.0
-
Effective batch size: 8
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 8
-
Gradient checkpointing: True
-
Prediction type: flow_matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flux_lora_target=all'])
-
Optimizer: adamw_bf16
-
Trainable parameter precision: Pure BF16
-
Base model precision: no_change
-
Caption dropout probability: 0.1%
-
LoRA Rank: 512
-
LoRA Alpha: None
-
LoRA Dropout: 0.1
-
LoRA initialisation style: default
Datasets
mapledata_aug
- Repeats: 5
- Total number of images: ~9560
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
💻 Usage Examples
Basic Usage
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'binarydaddy/simpletuner-lora'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
prompt = "A 2D vfx of flame effect in red and yellow, glazing against black background"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
model_output = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
model_output.save("output.png", format="PNG")