đ Japanese Hubert Base Phoneme CTC
This model is a fine-tuned version of rinna/japanese-hubert-base for Japanese phoneme recognition using CTC.
đ Quick Start
This model is a fine-tuned version of rinna/japanese-hubert-base
for Japanese phoneme recognition using CTC.
⨠Features
Model Overview
- Fine-tuned
rinna/japanese-hubert-base
using the ReazonSpeech v2 dataset, treating the phoneme labels generated by pyopenjtalk-plus
as ground truth.
- After training for about 0.3 epochs, the checkpoint with the best accuracy on the JSUT corpus (labels: https://github.com/sarulab-speech/jsut-label) was selected.
Hyperparameters
- Learning Rate
- CTC Head: 2e-5
- Others: 2e-6
- Batch Size: 32
- Maximum Audio Samples: 250000
- Optimization: AdamW
- betas: (0.9, 0.98)
- weight_decay: 0.01
- Learning Rate Scheduling: Cosine
- Warmup Steps: 10000
- Maximum Steps: 800000
- However, training was stopped at 200000 steps because the accuracy on JSUT did not improve.
đģ Usage Examples
Basic Usage
import librosa
import numpy as np
import torch
from transformers import HubertForCTC, Wav2Vec2Processor
MODEL_NAME = "prj-beatrice/japanese-hubert-base-phoneme-ctc"
model = HubertForCTC.from_pretrained(MODEL_NAME)
processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
audio, sr = librosa.load("audio.wav", sr=16000)
audio = np.concatenate([np.zeros(sr), audio, np.zeros(sr // 2)])
inputs = processor(audio, sampling_rate=sr, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_ids = outputs.logits.argmax(-1)
phonemes = processor.decode(predicted_ids[0], spaces_between_special_tokens=True)
print(phonemes)
đ Documentation
Training Environment
absl-py==2.3.0
accelerate==1.7.0
aiohappyeyeballs==2.6.1
aiohttp==3.12.13
aiosignal==1.3.2
annotated-types==0.7.0
async-timeout==5.0.1
attrs==25.3.0
audioread==3.0.1
certifi==2025.6.15
cffi==1.17.1
charset-normalizer==3.4.2
click==8.2.1
coloredlogs==15.0.1
coverage==7.9.1
datasets==3.6.0
decorator==5.2.1
dill==0.3.8
evaluate==0.4.3
exceptiongroup==1.3.0
filelock==3.18.0
flatbuffers==25.2.10
frozenlist==1.7.0
fsspec==2025.3.0
gitdb==4.0.12
gitpython==3.1.44
grpcio==1.73.0
hf-xet==1.1.3
huggingface-hub==0.33.0
humanfriendly==10.0
idna==3.10
iniconfig==2.1.0
jinja2==3.1.6
jiwer==3.1.0
joblib==1.5.1
lazy-loader==0.4
librosa==0.11.0
llvmlite==0.44.0
markdown==3.8
markupsafe==3.0.2
mpmath==1.3.0
msgpack==1.1.1
multidict==6.4.4
multiprocess==0.70.16
networkx==3.4.2
numba==0.61.2
numpy==2.2.6
nvidia-cublas-cu12==12.6.4.1
nvidia-cuda-cupti-cu12==12.6.80
nvidia-cuda-nvrtc-cu12==12.6.77
nvidia-cuda-runtime-cu12==12.6.77
nvidia-cudnn-cu12==9.5.1.17
nvidia-cufft-cu12==11.3.0.4
nvidia-cufile-cu12==1.11.1.6
nvidia-curand-cu12==10.3.7.77
nvidia-cusolver-cu12==11.7.1.2
nvidia-cusparse-cu12==12.5.4.2
nvidia-cusparselt-cu12==0.6.3
nvidia-nccl-cu12==2.26.2
nvidia-nvjitlink-cu12==12.6.85
nvidia-nvtx-cu12==12.6.77
onnxruntime==1.22.0
packaging==25.0
pandas==2.3.0
platformdirs==4.3.8
pluggy==1.6.0
pooch==1.8.2
propcache==0.3.2
protobuf==6.31.1
psutil==7.0.0
pyarrow==20.0.0
pycparser==2.22
pydantic==2.11.7
pydantic-core==2.33.2
pygments==2.19.1
pyopenjtalk-plus==0.4.1.post3
pytest==8.4.0
pytest-cov==6.2.1
python-dateutil==2.9.0.post0
pytz==2025.2
pyyaml==6.0.2
rapidfuzz==3.13.0
regex==2024.11.6
requests==2.32.4
ruff==0.11.13
safetensors==0.5.3
scikit-learn==1.7.0
scipy==1.15.3
sentry-sdk==2.30.0
setproctitle==1.3.6
setuptools==80.9.0
six==1.17.0
smmap==5.0.2
soundfile==0.13.1
soxr==0.5.0.post1
sudachidict-core==20250515
sudachipy==0.6.10
sympy==1.14.0
tensorboard==2.19.0
tensorboard-data-server==0.7.2
threadpoolctl==3.6.0
tokenizers==0.21.1
tomli==2.2.1
torch==2.7.1
torchaudio==2.7.1
tqdm==4.67.1
transformers==4.52.4
triton==3.3.1
typing-extensions==4.14.0
typing-inspection==0.4.1
tzdata==2025.2
urllib3==2.4.0
wandb==0.20.1
werkzeug==3.1.3
xxhash==3.5.0
yarl==1.20.1
đ License
This project is licensed under the Apache-2.0 license.