đ gemma-3-27b-it-FP8-Dynamic
This is a quantized version of google/gemma-3-27b-it, which offers optimized performance with specific quantization techniques and is suitable for efficient inference with vLLM.
đ Quick Start
The model can be quickly deployed using the vLLM backend. Refer to the Deployment section for detailed code examples.
⨠Features
- Multimodal Input: Accepts vision - text as input and generates text output.
- Quantization Optimization: Both weight and activation are quantized to FP8 data type, enabling efficient inference.
- vLLM Compatibility: Supports deployment with vLLM >= 0.5.2 and OpenAI - compatible serving.
đĻ Installation
No specific installation steps are provided in the original document.
đģ Usage Examples
Basic Usage
This model can be deployed efficiently using the vLLM backend.
from vllm import LLM, SamplingParams
from vllm.assets.image import ImageAsset
from transformers import AutoProcessor
model_name = "RedHatAI/gemma-3-27b-it-FP8-dynamic"
image = ImageAsset("cherry_blossom").pil_image.convert("RGB")
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
chat = [
{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is the content of this image?"}]},
{"role": "assistant", "content": []}
]
prompt = processor.apply_chat_template(chat, add_generation_prompt=True)
llm = LLM(model=model_name, trust_remote_code=True)
inputs = {"prompt": prompt, "multi_modal_data": {"image": [image]}}
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print("RESPONSE:", outputs[0].outputs[0].text)
vLLM also supports OpenAI - compatible serving. See the documentation for more details.
đ Documentation
Model Overview
Property |
Details |
Model Type |
gemma - 3 - 27b - it |
Input |
Vision - Text |
Output |
Text |
Weight quantization |
FP8 |
Activation quantization |
FP8 |
Release Date |
2/24/2025 |
Version |
1.0 |
Model Developers |
Neural Magic |
This model was obtained by quantizing the weights of google/gemma-3-27b-it to FP8 data type, ready for inference with vLLM >= 0.5.2.
Deployment
Use with vLLM
The model can be deployed efficiently using the vLLM backend. The above code example demonstrates the basic process.
Creation
This model was created with llm - compressor by running the following code snippet as part of a multimodal announcement blog.
Model Creation Code
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
from llmcompressor.transformers import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
model_id = google/gemma-3-27b-it
model = Gemma3ForConditionalGeneration.from_pretrained(
model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
recipe = [
QuantizationModifier(
targets="Linear",
scheme="FP8_DYNAMIC",
sequential_targets=["Gemma3DecoderLayer"],
ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
),
]
SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"
oneshot(
model=model,
recipe=recipe,
trust_remote_code_model=True,
output_dir=SAVE_DIR
)
Evaluation
The model was evaluated using lm_evaluation_harness for OpenLLM v1 text benchmark. The evaluations were conducted using the following commands:
Evaluation Commands
OpenLLM v1
lm_eval \
--model vllm \
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True,enforce_eager=True \
--tasks openllm \
--batch_size auto
Accuracy
Category |
Metric |
google/gemma-3-27b-it |
RedHatAI/gemma-3-27b-it-FP8-Dynamic |
Recovery (%) |
OpenLLM V1 |
ARC Challenge |
72.53% |
72.70% |
100.24% |
OpenLLM V1 |
GSM8K |
92.12% |
91.51% |
99.34% |
OpenLLM V1 |
Hellaswag |
85.78% |
85.69% |
99.90% |
OpenLLM V1 |
MMLU |
77.53% |
77.45% |
99.89% |
OpenLLM V1 |
Truthfulqa (mc2) |
62.20% |
62.20% |
99.99% |
OpenLLM V1 |
Winogrande |
79.40% |
78.77% |
99.20% |
OpenLLM V1 |
Average Score |
78.26% |
78.05% |
99.73% |
Vision Evals |
MMMU (val) |
50.89% |
51.00% |
100.22% |
Vision Evals |
ChartQA |
72.16% |
72.16% |
100.0% |
Vision Evals |
Average Score |
61.53% |
61.58% |
100.11% |
đ License
This project is licensed under the Apache 2.0 License.