Model Overview
Model Features
Model Capabilities
Use Cases
đ Qwen3-30B-A3B-AWQ
This project provides a quantized version of the Qwen3-30B-A3B model, enabling efficient deployment and inference. It offers seamless switching between thinking and non-thinking modes, enhancing performance across various scenarios.
đ Quick Start
Load the Model
import torch
from modelscope import AutoModelForCausalLM, AutoTokenizer
model_name = "swift/Qwen3-30B-A3B-AWQ"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="auto"
)
Prepare Input and Generate Output
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
⨠Features
Qwen3 Highlights
- Unique Mode Switching: Supports seamless switching between thinking and non-thinking modes within a single model, ensuring optimal performance in various scenarios.
- Enhanced Reasoning: Significantly improves reasoning capabilities, surpassing previous models in mathematics, code generation, and commonsense logical reasoning.
- Superior Alignment: Excels in human preference alignment, providing a more natural, engaging, and immersive conversational experience.
- Expert Agent Capabilities: Enables precise integration with external tools, achieving leading performance in complex agent-based tasks among open-source models.
- Multilingual Support: Supports over 100 languages and dialects, with strong capabilities for multilingual instruction following and translation.
Model Features
Property | Details |
---|---|
Model Type | Causal Language Models |
Training Stage | Pretraining & Post-training |
Number of Parameters | 30.5B in total and 3.3B activated |
Number of Paramaters (Non-Embedding) | 29.9B |
Number of Layers | 48 |
Number of Attention Heads (GQA) | 32 for Q and 4 for KV |
Number of Experts | 128 |
Number of Activated Experts | 8 |
Context Length | 32,768 natively and 131,072 tokens with YaRN |
đĻ Installation
It is recommended to use the latest version of transformers
to ensure compatibility with Qwen3-MoE.
pip install transformers
đģ Usage Examples
Basic Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-30B-A3B"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
Deployment
You can use sglang>=0.4.6.post1
or vllm>=0.8.5
to create an OpenAI-compatible API endpoint.
- SGLang:
python -m sglang.launch_server --model-path Qwen/Qwen3-30B-A3B --reasoning-parser qwen3
- vLLM:
vllm serve Qwen/Qwen3-30B-A3B --enable-reasoning --reasoning-parser deepseek_r1
Local Use
Applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3.
đ Documentation
Switching Between Thinking and Non-Thinking Mode
enable_thinking=True
: By default, Qwen3 has thinking capabilities enabled. The model will generate think content wrapped in a<think>...</think>
block, followed by the final response.
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True # True is the default value for enable_thinking
)
â ī¸ Important Note
For thinking mode, use
Temperature=0.6
,TopP=0.95
,TopK=20
, andMinP=0
(the default setting ingeneration_config.json
). DO NOT use greedy decoding, as it can lead to performance degradation and endless repetitions.
enable_thinking=False
: This mode strictly disables the model's thinking behavior, similar to the previous Qwen2.5-Instruct models. The model will not generate any think content.
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False # Setting enable_thinking=False disables thinking mode
)
â ī¸ Important Note
For non-thinking mode, we suggest using
Temperature=0.7
,TopP=0.8
,TopK=20
, andMinP=0
.
- Advanced Usage: Switching via User Input: You can add
/think
and/no_think
to user prompts or system messages to dynamically control the model's thinking mode.
from transformers import AutoModelForCausalLM, AutoTokenizer
class QwenChatbot:
def __init__(self, model_name="Qwen/Qwen3-30B-A3B"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.history = []
def generate_response(self, user_input):
messages = self.history + [{"role": "user", "content": user_input}]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
inputs = self.tokenizer(text, return_tensors="pt")
response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist()
response = self.tokenizer.decode(response_ids, skip_special_tokens=True)
# Update history
self.history.append({"role": "user", "content": user_input})
self.history.append({"role": "assistant", "content": response})
return response
# Example Usage
if __name__ == "__main__":
chatbot = QwenChatbot()
# First input (without /think or /no_think tags, thinking mode is enabled by default)
user_input_1 = "How many r's in strawberries?"
print(f"User: {user_input_1}")
response_1 = chatbot.generate_response(user_input_1)
print(f"Bot: {response_1}")
print("----------------------")
# Second input with /no_think
user_input_2 = "Then, how many r's in blueberries? /no_think"
print(f"User: {user_input_2}")
response_2 = chatbot.generate_response(user_input_2)
print(f"Bot: {response_2}")
print("----------------------")
# Third input with /think
user_input_3 = "Really? /think"
print(f"User: {user_input_3}")
response_3 = chatbot.generate_response(user_input_3)
print(f"Bot: {response_3}")
â ī¸ Important Note
When
enable_thinking=True
, the model will always output a<think>...</think>
block, but the content may be empty. Whenenable_thinking=False
, the soft switches are not valid.
Agentic Use
Qwen3 excels in tool calling capabilities. We recommend using Qwen-Agent to simplify the process.
from qwen_agent.agents import Assistant
# Define LLM
llm_cfg = {
'model': 'Qwen3-30B-A3B',
# Use the endpoint provided by Alibaba Model Studio:
# 'model_type': 'qwen_dashscope',
# 'api_key': os.getenv('DASHSCOPE_API_KEY'),
# Use a custom endpoint compatible with OpenAI API:
'model_server': 'http://localhost:8000/v1', # api_base
'api_key': 'EMPTY',
# Other parameters:
# 'generate_cfg': {
# # Add: When the response content is `<think>this is the thought</think>this is the answer;
# # Do not add: When the response has been separated by reasoning_content and content.
# 'thought_in_content': True,
# },
}
# Define Tools
tools = [
{'mcpServers': { # You can specify the MCP configuration file
'time': {
'command': 'uvx',
'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai']
},
"fetch": {
"command": "uvx",
"args": ["mcp-server-fetch"]
}
}
},
'code_interpreter', # Built-in tools
]
# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)
# Streaming generation
messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}]
for responses in bot.run(messages=messages):
pass
print(responses)
Processing Long Texts
Qwen3 natively supports a context length of up to 32,768 tokens. For longer texts, you can use YaRN scaling techniques.
- Modify Model Files: Add the
rope_scaling
fields to theconfig.json
file.
{
...,
"rope_scaling": {
"rope_type": "yarn",
"factor": 4.0,
"original_max_position_embeddings": 32768
}
}
- Pass Command Line Arguments:
- vLLM:
vllm serve ... --rope-scaling '{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}' --max-model-len 131072
- sglang:
python -m sglang.launch_server ... --json-model-override-args '{"rope_scaling":{"rope_type":"yarn","factor":4.0,"original_max_position_embeddings":32768}}'
- llama-server:
llama-server ... --rope-scaling yarn --rope-scale 4 --yarn-orig-ctx 32768
â ī¸ Important Note
If you encounter the warning
Unrecognized keys in
rope_scalingfor 'rope_type'='yarn': {'original_max_position_embeddings'}
, please upgradetransformers>=4.51.0
.
đĄ Usage Tip
The endpoint provided by Alibaba Model Studio supports dynamic YaRN by default, no extra configuration is needed.
đ§ Technical Details
Best Practices
- Sampling Parameters:
- Thinking mode:
Temperature=0.6
,TopP=0.95
,TopK=20
,MinP=0
. - Non-thinking mode:
Temperature=0.7
,TopP=0.8
,TopK=20
,MinP=0
. - Adjust
presence_penalty
between 0 and 2 to reduce repetitions.
- Thinking mode:
- Output Length: Use 32,768 tokens for most queries, and 38,912 tokens for complex problems.
- Standardize Output Format:
- Math problems: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
- Multiple-choice questions: Add "Please show your choice in the
answer
field with only the choice letter, e.g.,"answer": "C"
." to the prompt.
- No Thinking Content in History: In multi-turn conversations, only include the final output in the history.
Citation
@misc{qwen3,
title = {Qwen3},
url = {https://qwenlm.github.io/blog/qwen3/},
author = {Qwen Team},
month = {April},
year = {2025}
}
đ License
This project is licensed under the Apache-2.0 license.

