Model Overview
Model Features
Model Capabilities
Use Cases
🚀 MedGemma
MedGemma is a collection of Gemma 3 variants trained for medical text and image comprehension, which can help developers accelerate the building of healthcare-based AI applications.
🚀 Quick Start
Below are some example code snippets to help you quickly get started running the model locally on GPU. If you want to use the model at scale, we recommend that you create a production version using Model Garden.
First, install the Transformers library. Gemma 3 is supported starting from transformers 4.50.0.
$ pip install -U transformers
Run model with the pipeline
API
from transformers import pipeline
from PIL import Image
import requests
import torch
pipe = pipeline(
"image-text-to-text",
model="google/medgemma-4b-it",
torch_dtype=torch.bfloat16,
device="cuda",
)
# Image attribution: Stillwaterising, CC0, via Wikimedia Commons
image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are an expert radiologist."}]
},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this X-ray"},
{"type": "image", "image": image},
]
}
]
output = pipe(text=messages, max_new_tokens=200)
print(output[0]["generated_text"][-1]["content"])
Run the model directly
# pip install accelerate
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image
import requests
import torch
model_id = "google/medgemma-4b-it"
model = AutoModelForImageTextToText.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_id)
# Image attribution: Stillwaterising, CC0, via Wikimedia Commons
image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are an expert radiologist."}]
},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this X-ray"},
{"type": "image", "image": image}
]
}
]
inputs = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(model.device, dtype=torch.bfloat16)
input_len = inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**inputs, max_new_tokens=200, do_sample=False)
generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True)
print(decoded)
✨ Features
- Medical Focus: MedGemma is a collection of Gemma 3 variants trained for performance on medical text and image comprehension, which can help developers accelerate the building of healthcare-based AI applications.
- Multiple Variants: It currently comes in two variants: a 4B multimodal version and a 27B text-only version.
- Good Performance: MedGemma variants have been evaluated on a range of clinically relevant benchmarks to illustrate their baseline performance.
📦 Installation
First, install the Transformers library. Gemma 3 is supported starting from transformers 4.50.0.
$ pip install -U transformers
💻 Usage Examples
Basic Usage
from transformers import pipeline
from PIL import Image
import requests
import torch
pipe = pipeline(
"image-text-to-text",
model="google/medgemma-4b-it",
torch_dtype=torch.bfloat16,
device="cuda",
)
# Image attribution: Stillwaterising, CC0, via Wikimedia Commons
image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are an expert radiologist."}]
},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this X-ray"},
{"type": "image", "image": image},
]
}
]
output = pipe(text=messages, max_new_tokens=200)
print(output[0]["generated_text"][-1]["content"])
Advanced Usage
# pip install accelerate
from transformers import AutoProcessor, AutoModelForImageTextToText
from PIL import Image
import requests
import torch
model_id = "google/medgemma-4b-it"
model = AutoModelForImageTextToText.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_id)
# Image attribution: Stillwaterising, CC0, via Wikimedia Commons
image_url = "https://upload.wikimedia.org/wikipedia/commons/c/c8/Chest_Xray_PA_3-8-2010.png"
image = Image.open(requests.get(image_url, headers={"User-Agent": "example"}, stream=True).raw)
messages = [
{
"role": "system",
"content": [{"type": "text", "text": "You are an expert radiologist."}]
},
{
"role": "user",
"content": [
{"type": "text", "text": "Describe this X-ray"},
{"type": "image", "image": image}
]
}
]
inputs = processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(model.device, dtype=torch.bfloat16)
input_len = inputs["input_ids"].shape[-1]
with torch.inference_mode():
generation = model.generate(**inputs, max_new_tokens=200, do_sample=False)
generation = generation[0][input_len:]
decoded = processor.decode(generation, skip_special_tokens=True)
print(decoded)
📚 Documentation
Model information
This section describes the MedGemma model and how to use it.
Description
MedGemma is a collection of Gemma 3 variants that are trained for performance on medical text and image comprehension. Developers can use MedGemma to accelerate building healthcare-based AI applications. MedGemma currently comes in two variants: a 4B multimodal version and a 27B text-only version.
MedGemma 4B utilizes a SigLIP image encoder that has been specifically pre-trained on a variety of de-identified medical data, including chest X-rays, dermatology images, ophthalmology images, and histopathology slides. Its LLM component is trained on a diverse set of medical data, including radiology images, histopathology patches, ophthalmology images, and dermatology images.
MedGemma 4B is available in both pre-trained (suffix: -pt
) and instruction-tuned (suffix -it
) versions. The instruction-tuned version is a better starting point for most applications. The pre-trained version is available for those who want to experiment more deeply with the models.
MedGemma 27B has been trained exclusively on medical text and optimized for inference-time computation. MedGemma 27B is only available as an instruction-tuned model.
MedGemma variants have been evaluated on a range of clinically relevant benchmarks to illustrate their baseline performance. These include both open benchmark datasets and curated datasets. Developers can fine-tune MedGemma variants for improved performance. Consult the Intended Use section below for more details.
A full technical report will be available soon.
How to use
See the Quick Start section for details.
Examples
See the following Colab notebooks for examples of how to use MedGemma:
- To give the model a quick try, running it locally with weights from Hugging Face, see Quick start notebook in Colab. Note that you will need to use Colab Enterprise to run the 27B model without quantization.
- For an example of fine-tuning the model, see the Fine-tuning notebook in Colab.
Model architecture overview
The MedGemma model is built based on Gemma 3 and uses the same decoder-only transformer architecture as Gemma 3. To read more about the architecture, consult the Gemma 3 model card.
Technical specifications
Property | Details |
---|---|
Model Type | Decoder-only Transformer architecture, see the Gemma 3 technical report |
Modalities | 4B: Text, vision; 27B: Text only |
Attention mechanism | Utilizes grouped-query attention (GQA) |
Context length | Supports long context, at least 128K tokens |
Key publication | Coming soon |
Model created | May 20, 2025 |
Model version | 1.0.0 |
Citation
A technical report is coming soon. In the meantime, if you publish using this model, please cite the Hugging Face model page:
@misc{medgemma-hf,
author = {Google},
title = {MedGemma Hugging Face},
howpublished = {\url{https://huggingface.co/collections/google/medgemma-release-680aade845f90bec6a3f60c4}},
year = {2025},
note = {Accessed: [Insert Date Accessed, e.g., 2025-05-20]}
}
Inputs and outputs
Input:
- Text string, such as a question or prompt
- Images, normalized to 896 x 896 resolution and encoded to 256 tokens each
- Total input length of 128K tokens
Output:
- Generated text in response to the input, such as an answer to a question, analysis of image content, or a summary of a document
- Total output length of 8192 tokens
Performance and validation
MedGemma was evaluated across a range of different multimodal classification, report generation, visual question answering, and text-based tasks.
Key performance metrics
Imaging evaluations
The multimodal performance of MedGemma 4B was evaluated across a range of benchmarks, focusing on radiology, dermatology, histopathology, ophthalmology, and multimodal clinical reasoning.
MedGemma 4B outperforms the base Gemma 3 4B model across all tested multimodal health benchmarks.
Task and metric | MedGemma 4B | Gemma 3 4B |
---|---|---|
Medical image classification | ||
MIMIC CXR - Average F1 for top 5 conditions | 88.9 | 81.1 |
CheXpert CXR - Average F1 for top 5 conditions | 48.1 | 31.2 |
DermMCQA* - Accuracy | 71.8 | 42.6 |
Visual question answering | ||
SlakeVQA (radiology) - Tokenized F1 | 62.3 | 38.6 |
VQA-Rad** (radiology) - Tokenized F1 | 49.9 | 38.6 |
PathMCQA (histopathology, internal***) - Accuracy | 69.8 | 37.1 |
Knowledge and reasoning | ||
MedXpertQA (text + multimodal questions) - Accuracy | 18.8 | 16.4 |
*Based on ref, presented as a 4-way MCQ per example for skin condition classification.
**On balanced split, see ref.
***Based on multiple datasets, presented as 3 - 9 way MCQ per example for identification, grading, and subtype for breast, cervical, and prostate cancer.
Chest X-ray report generation
MedGemma chest X-ray (CXR) report generation performance was evaluated on MIMIC-CXR using the RadGraph F1 metric. We compare the MedGemma pre-trained checkpoint with our previous best model for CXR report generation, PaliGemma 2.
Metric | MedGemma 4B (pre-trained) | PaliGemma 2 3B (tuned for CXR) | PaliGemma 2 10B (tuned for CXR) |
---|---|---|---|
Chest X-ray report generation | |||
MIMIC CXR - RadGraph F1 | 29.5 | 28.8 | 29.5 |
The instruction-tuned versions of MedGemma 4B and Gemma 3 4B achieve lower scores (0.22 and 0.12, respectively) due to the differences in reporting style compared to the MIMIC ground truth reports. Further fine-tuning on MIMIC reports will enable users to achieve improved performance.
Text evaluations
MedGemma 4B and text-only MedGemma 27B were evaluated across a range of text-only benchmarks for medical knowledge and reasoning.
The MedGemma models outperform their respective base Gemma models across all tested text-only health benchmarks.
Metric | MedGemma 27B | Gemma 3 27B | MedGemma 4B | Gemma 3 4B |
---|---|---|---|---|
MedQA (4-op) | 89.8 (best-of-5) 87.7 (0-shot) | 74.9 | 64.4 | 50.7 |
MedMCQA | 74.2 | 62.6 | 55.7 | 45.4 |
PubMedQA | 76.8 | 73.4 | 73.4 | 68.4 |
MMLU Med (text only) | 87.0 | 83.3 | 70.0 | 67.2 |
MedXpertQA (text only) | 26.7 | 15.7 | 14.2 | 11.6 |
AfriMed-QA | 84.0 | 72.0 | 52.0 | 48.0 |
For all MedGemma 27B results, test-time scaling is used to improve performance.
Ethics and safety evaluation
Evaluation approach
Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including:
- Child safety: Evaluation of text-to-text and image-to-text prompts covering child safety policies, including child sexual abuse and exploitation.
- Content safety: Evaluation of text-to-text and image-to-text prompts covering safety policies, including harassment, violence and gore, and hate speech.
- Representational harms: Evaluation of text-to-text and image-to-text prompts covering safety policies, including bias, stereotyping, and harmful associations or inaccuracies.
- General medical harms: Evaluation of text-to-text and image-to-text prompts covering safety policies, including information quality and harmful associations or inaccuracies.
In addition to development level evaluations, we conduct "assurance evaluations" which are our "arms-length" internal evaluations for responsibility governance decision making. They are conducted separately from the model development team, to inform decision making about release. High-level findings are fed back to the model team, but prompt sets are held out to prevent overfitting and preserve the results' ability to inform decision making. Notable assurance evaluation results are reported to our Responsibility & Safety Council as part of release review.
Evaluation results
For all areas of safety testing, we saw safe levels of performance across the categories of child safety, content safety, and representational harms. All testing was conducted without safety filters to evaluate the model capabilities and behaviors. For text-to-text, image-to-text, and audio-to-text, and across both MedGemma model sizes, the model produced minimal policy violations. A limitation of our evaluations was that they included primarily English language prompts.
🔧 Technical Details
Data card
Dataset overview
Training
The base Gemma models are pre-trained on a large corpus of text and code data. MedGemma 4B utilizes a SigLIP image encoder that has been specifically pre-trained on a variety of de-identified medical data, including radiology images, histopathology images, ophthalmology images, and dermatology images. Its LLM component is trained on a diverse set of medical data, including medical text relevant to radiology images, chest-x rays, histopathology patches, ophthalmology images and dermatology images.
Evaluation
MedGemma models have been evaluated on a comprehensive set of clinically relevant benchmarks, including over 22 datasets across 5 different tasks and 6 medical image modalities. These include both open benchmark datasets and curated datasets, with a focus on expert human evaluations for tasks like CXR report generation and radiology VQA.
Source
MedGemma utilizes a combination of public and private datasets.
This model was trained on diverse public datasets including MIMIC-CXR (chest X-rays and reports), Slake-VQA (multimodal medical images and questions), PAD-UFES-20 (skin lesion images and data), SCIN (dermatology images), TCGA (cancer genomics data), CAMELYON (lymph node histopathology images), PMC-OA (biomedical literature with images), and Mendeley Digital Knee X-Ray (knee X-rays).
Additionally, multiple diverse proprietary datasets were licensed and incorporated (described next).
Data Ownership and Documentation
- Mimic-CXR: MIT Laboratory for Computational Physiology and Beth Israel Deaconess Medical Center (BIDMC).
- Slake-VQA: The Hong Kong Polytechnic University (PolyU), with collaborators including West China Hospital of Sichuan University and Sichuan Academy of Medical Sciences / Sichuan Provincial People's Hospital.
- PAD-UFES-20: Federal University of Espírito Santo (UFES), Brazil, through its Dermatological and Surgical Assistance Program (PAD).
- SCIN: A collaboration between Google Health and Stanford Medicine.
- TCGA (The Cancer Genome Atlas): A joint effort of National Cancer Institute and National Human Genome Research Institute. Data from TCGA are available via the Genomic Data Commons (GDC)
- CAMELYON: The data was collected from Radboud University Medical Center and University Medical Center Utrecht in the Netherlands.
- PMC-OA (PubMed Central Open Access Subset): Maintained by the National Library of Medicine (NLM) and National Center for Biotechnology Information (NCBI), which are part of the NIH.
- MedQA: This dataset was created by a team of researchers led by Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits
- Mendeley Digital Knee X-Ray: This dataset is from Rani Channamma University, and is hosted on Mendeley Data.
- AfriMed-QA: This data was developed and led by multiple collaborating organizations and researchers include key contributors: Intron Health, SisonkeBiotik, BioRAMP, Georgia Institute of Technology, and MasakhaneNLP.
- VQA-RAD: This dataset was created by a research team led by Jason J. Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman and their affiliated institutions (the US National Library of Medicine and National Institutes of Health)
- MedExpQA: This dataset was created by researchers at the HiTZ Center (Basque Center for Language Technology and Artificial Intelligence).
- MedXpertQA: This dataset was developed by researchers at Tsinghua University (Beijing, China) and Shanghai Artificial Intelligence Laboratory (Shanghai, China).
In addition to the public datasets listed above, MedGemma was also trained on de-identified datasets licensed for research or collected internally at Google from consented participants.
- Radiology dataset 1: De-identified dataset of different CT studies across body parts from a US-based radiology outpatient diagnostic center network.
- Ophthalmology dataset 1: De-identified dataset of fundus images from diabetic retinopathy screening.
- Dermatology dataset 1: De-identified dataset of skin lesion images from a US-based dermatology clinic.
📄 License
The use of MedGemma is governed by the Health AI Developer Foundations terms of use.






