đ CVLFace Pretrained Model (ADAFACE VIT BASE KPRPE WEBFACE12M)
This project provides a pre - trained face model, ADAFACE VIT BASE KPRPE WEBFACE12M, which is related to the research on face recognition. It can be used for various face - related tasks.
đ GitHub âĸ đ¤ Hugging Face
đ Quick Start
from transformers import AutoModel
from huggingface_hub import hf_hub_download
import shutil
import os
import torch
import sys
def download(repo_id, path, HF_TOKEN=None):
os.makedirs(path, exist_ok=True)
files_path = os.path.join(path, 'files.txt')
if not os.path.exists(files_path):
hf_hub_download(repo_id, 'files.txt', token=HF_TOKEN, local_dir=path, local_dir_use_symlinks=False)
with open(os.path.join(path, 'files.txt'), 'r') as f:
files = f.read().split('\n')
for file in [f for f in files if f] + ['config.json', 'wrapper.py', 'model.safetensors']:
full_path = os.path.join(path, file)
if not os.path.exists(full_path):
hf_hub_download(repo_id, file, token=HF_TOKEN, local_dir=path, local_dir_use_symlinks=False)
def load_model_from_local_path(path, HF_TOKEN=None):
cwd = os.getcwd()
os.chdir(path)
sys.path.insert(0, path)
model = AutoModel.from_pretrained(path, trust_remote_code=True, token=HF_TOKEN)
os.chdir(cwd)
sys.path.pop(0)
return model
def load_model_by_repo_id(repo_id, save_path, HF_TOKEN=None, force_download=False):
if force_download:
if os.path.exists(save_path):
shutil.rmtree(save_path)
download(repo_id, save_path, HF_TOKEN)
return load_model_from_local_path(save_path, HF_TOKEN)
if __name__ == '__main__':
HF_TOKEN = 'YOUR_HUGGINGFACE_TOKEN'
path = os.path.expanduser('~/.cvlface_cache/minchul/cvlface_adaface_vit_base_kprpe_webface12m')
repo_id = 'minchul/cvlface_adaface_vit_base_kprpe_webface12m'
model = load_model_by_repo_id(repo_id, path, HF_TOKEN)
from torchvision.transforms import Compose, ToTensor, Normalize
from PIL import Image
img = Image.open('path/to/image.jpg')
trans = Compose([ToTensor(), Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])])
input = trans(img).unsqueeze(0)
aligner = load_model_by_repo_id('minchul/cvlface_DFA_mobilenet', path, HF_TOKEN)
aligned_x, orig_ldmks, aligned_ldmks, score, thetas, bbox = aligner(input)
keypoints = orig_ldmks
out = model(input, keypoints)
đ Documentation
Model Information
Property |
Details |
Model Name |
ADAFACE VIT BASE KPRPE WEBFACE12M |
Related Paper |
KeyPoint Relative Position Encoding for Face Recognition (https://arxiv.org/abs/2403.14852) |
Citation and License
Please cite the original paper and follow the license of the training dataset.
đ License
This project is licensed under the MIT License.