đ Whisper-Large v3 for Narrow Accent Classification
This model is designed for narrow accent classification, offering a solution to accurately identify diverse English accents.
đ Quick Start
Download repo
git clone git@github.com:tiantiaf0627/vox-profile-release.git
Install the package
conda create -n vox_profile python=3.8
cd vox-profile-release
pip install -e .
Load the model
import torch
import torch.nn.functional as F
from src.model.accent.whisper_accent import WhisperWrapper
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
model = WhisperWrapper.from_pretrained("tiantiaf/whisper-large-v3-narrow-accent").to(device)
model.eval()
Prediction
english_accent_list = [
'East Asia', 'English', 'Germanic', 'Irish',
'North America', 'Northern Irish', 'Oceania',
'Other', 'Romance', 'Scottish', 'Semitic', 'Slavic',
'South African', 'Southeast Asia', 'South Asia', 'Welsh'
]
max_audio_length = 15 * 16000
data = torch.zeros([1, 16000]).float().to(device)[:, :max_audio_length]
logits, embeddings = model(data, return_feature=True)
accent_prob = F.softmax(logits, dim=1)
print(english_accent_list[torch.argmax(accent_prob).detach().cpu().item()])
⨠Features
- Accent Classification: This model can classify narrow English accents, including 'East Asia', 'English', 'Germanic', etc.
- Based on Whisper: Built on the
openai/whisper-large-v3
base model.
- Benchmark Support: Implements the narrow accent classification described in Vox - Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits (https://arxiv.org/pdf/2505.14648).
đĻ Installation
Download repo
git clone git@github.com:tiantiaf0627/vox-profile-release.git
Install the package
conda create -n vox_profile python=3.8
cd vox-profile-release
pip install -e .
đģ Usage Examples
Basic Usage
import torch
import torch.nn.functional as F
from src.model.accent.whisper_accent import WhisperWrapper
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
model = WhisperWrapper.from_pretrained("tiantiaf/whisper-large-v3-narrow-accent").to(device)
model.eval()
english_accent_list = [
'East Asia', 'English', 'Germanic', 'Irish',
'North America', 'Northern Irish', 'Oceania',
'Other', 'Romance', 'Scottish', 'Semitic', 'Slavic',
'South African', 'Southeast Asia', 'South Asia', 'Welsh'
]
max_audio_length = 15 * 16000
data = torch.zeros([1, 16000]).float().to(device)[:, :max_audio_length]
logits, embeddings = model(data, return_feature=True)
accent_prob = F.softmax(logits, dim=1)
print(english_accent_list[torch.argmax(accent_prob).detach().cpu().item()])
đ Documentation
Model Description
This model includes the implementation of narrow accent classification described in Vox - Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits (https://arxiv.org/pdf/2505.14648).
The included English accents are:
[
'East Asia', 'English', 'Germanic', 'Irish',
'North America', 'Northern Irish', 'Oceania',
'Other', 'Romance', 'Scottish', 'Semitic', 'Slavic',
'South African', 'Southeast Asia', 'South Asia', 'Welsh'
]
Some observations we have seen for this model (List to add as we observe more):
- TTS samples have a higher tendency to be recognized as Germanic.
- Library: https://github.com/tiantiaf0627/vox-profile-release
đ License
This model is released under the bsd - 3 - clause license.
đ Citation
@article{feng2025vox,
title={Vox-Profile: A Speech Foundation Model Benchmark for Characterizing Diverse Speaker and Speech Traits},
author={Feng, Tiantian and Lee, Jihwan and Xu, Anfeng and Lee, Yoonjeong and Lertpetchpun, Thanathai and Shi, Xuan and Wang, Helin and Thebaud, Thomas and Moro-Velazquez, Laureano and Byrd, Dani and others},
journal={arXiv preprint arXiv:2505.14648},
year={2025}
}
đĻ Model Information
Property |
Details |
Model Type |
audio - classification |
Base Model |
openai/whisper - large - v3 |
Datasets |
mozilla - foundation/common_voice_11_0 |
Metrics |
accuracy |