🚀 Chocolatine-2-14B-Instruct-v2.0.3
This is a DPO fine-tuning of the merged model jpacifico/Chocolatine-2-merged-qwen25arch (Qwen-2.5-14B architecture), using the jpacifico/french-orca-dpo-pairs-revised RLHF dataset. Training in French also enhances the model's overall capabilities.
💡 Usage Tip
Window context: up to 128K tokens
✨ Features
LLM Leaderboard FR
[Updated 2025-04-25]
It ranks among the top 3 in all categories on the French Government Leaderboard LLM FR.

MT-Bench-French
Chocolatine-2 outperforms its previous versions and its base architecture Qwen-2.5 model on MT-Bench-French, used with multilingual-mt-bench and GPT-4-Turbo as a LLM-judge. The goal was to achieve GPT-4o-mini's performance on the French language, and this version comes close to the performance of the OpenAI model according to this benchmark.
########## First turn ##########
score
model turn
gpt-4o-mini 1 9.287500
Chocolatine-2-14B-Instruct-v2.0.3 1 9.112500
Qwen2.5-14B-Instruct 1 8.887500
Chocolatine-14B-Instruct-DPO-v1.2 1 8.612500
Phi-3.5-mini-instruct 1 8.525000
Chocolatine-3B-Instruct-DPO-v1.2 1 8.375000
DeepSeek-R1-Distill-Qwen-14B 1 8.375000
phi-4 1 8.300000
Phi-3-medium-4k-instruct 1 8.225000
gpt-3.5-turbo 1 8.137500
Chocolatine-3B-Instruct-DPO-Revised 1 7.987500
Meta-Llama-3.1-8B-Instruct 1 7.050000
vigostral-7b-chat 1 6.787500
Mistral-7B-Instruct-v0.3 1 6.750000
gemma-2-2b-it 1 6.450000
########## Second turn ##########
score
model turn
Chocolatine-2-14B-Instruct-v2.0.3 2 9.050000
gpt-4o-mini 2 8.912500
Qwen2.5-14B-Instruct 2 8.912500
Chocolatine-14B-Instruct-DPO-v1.2 2 8.337500
DeepSeek-R1-Distill-Qwen-14B 2 8.200000
phi-4 2 8.131250
Chocolatine-3B-Instruct-DPO-Revised 2 7.937500
Chocolatine-3B-Instruct-DPO-v1.2 2 7.862500
Phi-3-medium-4k-instruct 2 7.750000
gpt-3.5-turbo 2 7.679167
Phi-3.5-mini-instruct 2 7.575000
Meta-Llama-3.1-8B-Instruct 2 6.787500
Mistral-7B-Instruct-v0.3 2 6.500000
vigostral-7b-chat 2 6.162500
gemma-2-2b-it 2 6.100000
########## Average ##########
score
model
gpt-4o-mini 9.100000
Chocolatine-2-14B-Instruct-v2.0.3 9.081250
Qwen2.5-14B-Instruct 8.900000
Chocolatine-14B-Instruct-DPO-v1.2 8.475000
DeepSeek-R1-Distill-Qwen-14B 8.287500
phi-4 8.215625
Chocolatine-3B-Instruct-DPO-v1.2 8.118750
Phi-3.5-mini-instruct 8.050000
Phi-3-medium-4k-instruct 7.987500
Chocolatine-3B-Instruct-DPO-Revised 7.962500
gpt-3.5-turbo 7.908333
Meta-Llama-3.1-8B-Instruct 6.918750
Mistral-7B-Instruct-v0.3 6.625000
vigostral-7b-chat 6.475000
gemma-2-2b-it 6.275000
OpenLLM Leaderboard (Archived)
Chocolatine-2 is the best-performing 14B fine-tuned model (Ex-aequo with avg. score 41.08) on the OpenLLM Leaderboard.
[Updated 2025-02-12]
Property |
Details |
Avg. |
41.08 |
IFEval |
70.37 |
BBH |
50.63 |
MATH Lvl 5 |
40.56 |
GPQA |
17.23 |
MuSR |
19.07 |
MMLU-PRO |
48.60 |
💻 Usage Examples
Basic Usage
You can run this model using my Colab notebook.
You can also run Chocolatine-2 using the following code:
import transformers
from transformers import AutoTokenizer
message = [
{"role": "system", "content": "You are a helpful assistant chatbot."},
{"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
pipeline = transformers.pipeline(
"text-generation",
model=new_model,
tokenizer=tokenizer
)
sequences = pipeline(
prompt,
do_sample=True,
temperature=0.7,
top_p=0.9,
num_return_sequences=1,
max_length=200,
)
print(sequences[0]['generated_text'])
📚 Documentation
Limitations
The Chocolatine-2 model series is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanism.
Property |
Details |
Developed by |
Jonathan Pacifico, 2025 |
Model Type |
LLM |
Training Data |
French, English |
License |
Apache-2.0 |
Made with ❤️ in France