đ Qwen3-30B-A3B-quantized.w4a16
This is a quantized version of the Qwen3-30B-A3B model, optimized for reduced disk space and GPU memory usage, suitable for various text - generation tasks.
đ Quick Start
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Qwen3-30B-A3B-quantized.w4a16"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256)
messages = [
{"role": "user", "content": prompt}
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM also supports OpenAI - compatible serving. See the documentation for more details.
⨠Features
Model Overview
- Model Architecture: Qwen3ForCausalLM
- Model Optimizations:
- Weight quantization: INT4
- Intended Use Cases:
- Reasoning.
- Function calling.
- Subject matter experts via fine - tuning.
- Multilingual instruction following.
- Translation.
- Out - of - scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- Release Date: 05/05/2025
- Version: 1.0
- Model Developers: RedHat (Neural Magic)
Model Optimizations
This model was obtained by quantizing the weights of Qwen3-30B-A3B to INT4 data type.
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights of the linear operators within transformers blocks are quantized.
Weights are quantized using a symmetric per - group scheme, with group size 128.
The GPTQ algorithm is applied for quantization, as implemented in the llm - compressor library.
đ§ Technical Details
Creation
Creation details
This model was created with [llm - compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForCausalLM, AutoTokenizer
model_stub = "Qwen/Qwen3-30B-A3B"
model_name = model_stub.split("/")[-1]
num_samples = 1024
max_seq_len = 8192
model = AutoModelForCausalLM.from_pretrained(model_stub)
tokenizer = AutoTokenizer.from_pretrained(model_stub)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.map(preprocess_fn)
recipe = GPTQModifier(
ignore: ["lm_head", "re:.*gate$"]
sequential_targets=["Qwen3DecoderLayer"],
targets="Linear",
scheme="W4A16",
dampening_frac=0.01,
)
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
save_path = model_name + "-quantized.w4a16"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using [lm - evaluation - harness](https://github.com/EleutherAI/lm - evaluation - harness), and on reasoning tasks using lighteval.
vLLM was used for all evaluations.
Evaluation details
lm - evaluation - harness
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks openllm \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks mgsm \
--apply_chat_template\
--batch_size auto
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-30B-A3B-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=1 \
--tasks leaderboard \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
lighteval
lighteval_model_arguments.yaml
model_parameters:
model_name: RedHatAI/Qwen3-30B-A3B-quantized.w4a16
dtype: auto
gpu_memory_utilization: 0.9
max_model_length: 40960
generation_parameters:
temperature: 0.6
top_k: 20
min_p: 0.0
top_p: 0.95
max_new_tokens: 32768
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|aime24|0|0 \
--use_chat_template = true
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|aime25|0|0 \
--use_chat_template = true
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|math_500|0|0 \
--use_chat_template = true
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|gpqa:diamond|0|0 \
--use_chat_template = true
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks extended|lcb:codegeneration \
--use_chat_template = true
Accuracy
Category |
Benchmark |
Qwen3 - 30B - A3B |
Qwen3 - 30B - A3B - quantized.w4a16 (this model) |
Recovery |
OpenLLM v1 |
MMLU (5 - shot) |
77.67 |
76.11 |
98.00% |
|
ARC Challenge (25 - shot) |
63.40 |
62.97 |
99.3% |
|
GSM - 8K (5 - shot, strict - match) |
87.26 |
86.66 |
99.3% |
|
Hellaswag (10 - shot) |
54.33 |
54.76 |
100.8% |
|
Winogrande (5 - shot) |
66.77 |
64.33 |
96.3% |
|
TruthfulQA (0 - shot, mc2) |
56.27 |
54.76 |
97.3% |
|
Average |
67.62 |
66.60 |
98.5% |
OpenLLM v2 |
MMLU - Pro (5 - shot) |
47.45 |
45.38 |
95.6% |
|
IFEval (0 - shot) |
86.26 |
84.86 |
98.4% |
|
BBH (3 - shot) |
34.81 |
28.12 |
80.8% |
|
Math - lvl - 5 (4 - shot) |
52.14 |
56.99 |
109.3% |
|
GPQA (0 - shot) |
0.31 |
0.60 |
--- |
|
MuSR (0 - shot) |
8.09 |
9.05 |
--- |
|
Average |
38.18 |
37.50 |
98.2% |
Multilingual |
MGSM (0 - shot) |
32.27 |
33,890 |
104.8% |
Reasoning (generation) |
AIME 2024 |
78.33 |
78.54 |
100.3% |
|
AIME 2025 |
71.46 |
70.31 |
98.4% |
|
GPQA diamond |
62.63 |
62.12 |
99.2% |
|
Math - lvl - 5 |
97.60 |
97.20 |
99.6% |
|
LiveCodeBench |
60.66 |
58.75 |
96.9% |
đ License
This model is released under the apache - 2.0 license.