đ Qwen3-32B-FP8-dynamic
This project is based on the Qwen3-32B model, which uses FP8 quantization technology to optimize the model, reducing GPU memory requirements and increasing compute throughput.
⨠Features
- Model Architecture: Based on Qwen3ForCausalLM, it takes text as input and outputs text.
- Model Optimizations: Both weights and activations are quantized to FP8, reducing GPU memory requirements by approximately 50% and increasing matrix - multiply compute throughput by approximately 2x.
- Intended Use Cases: Suitable for reasoning, function calling, fine - tuning for subject matter experts, multilingual instruction following, and translation.
đĻ Installation
There is no specific installation content provided in the original document, so this section is skipped.
đģ Usage Examples
Basic Usage
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Qwen3-32B-FP8-dynamic"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256)
messages = [
{"role": "user", "content": prompt}
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
Advanced Usage
There is no advanced usage content provided in the original document, so this part is not added.
đ Documentation
Model Overview
- Model Architecture: Qwen3ForCausalLM
- Model Optimizations:
- Activation quantization: FP8
- Weight quantization: FP8
- Intended Use Cases:
- Reasoning.
- Function calling.
- Subject matter experts via fine - tuning.
- Multilingual instruction following.
- Translation.
- Out - of - scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws).
- Release Date: 05/02/2025
- Version: 1.0
- Model Developers: RedHat (Neural Magic)
Model Optimizations
This model was obtained by quantizing activations and weights of [Qwen3 - 32B](https://huggingface.co/Qwen/Qwen3 - 32B) to FP8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix - multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per - channel scheme, whereas activations are quantized with a symmetric dynamic per - token scheme. The [llm - compressor](https://github.com/vllm - project/llm - compressor) library is used for quantization.
Deployment
This model can be deployed efficiently using the vLLM backend. vLLM also supports OpenAI - compatible serving. See the documentation for more details.
Creation
Creation details
This model was created with [llm - compressor](https://github.com/vllm - project/llm - compressor) by running the code snippet below.
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForCausalLM, AutoTokenizer
model_stub = "Qwen/Qwen3-32B"
model_name = model_stub.split("/")[-1]
model = AutoModelForCausalLM.from_pretrained(model_stub)
tokenizer = AutoTokenizer.from_pretrained(model_stub)
recipe = QuantizationModifier(
ignore=["lm_head"],
targets="Linear",
scheme="FP8_dynamic",
)
oneshot(
model=model,
recipe=recipe,
)
save_path = model_name + "-FP8-dynamic"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (versions 1 and 2), using [lm - evaluation - harness](https://github.com/EleutherAI/lm - evaluation - harness), and on reasoning tasks using lighteval. vLLM was used for all evaluations.
Evaluation details
lm - evaluation - harness
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-32B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks openllm \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-32B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mgsm \
--apply_chat_template\
--batch_size auto
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Qwen3-32B-FP8-dynamic",dtype=auto,gpu_memory_utilization=0.5,max_model_len=16384,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks leaderboard \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
lighteval
lighteval_model_arguments.yaml
model_parameters:
model_name: RedHatAI/Qwen3-32B-FP8-dynamic
dtype: auto
gpu_memory_utilization: 0.9
tensor_parallel_size: 2
max_model_length: 40960
generation_parameters:
temperature: 0.6
top_k: 20
min_p: 0.0
top_p: 0.95
max_new_tokens: 32768
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|aime24|0|0 \
--use_chat_template = true
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|aime25|0|0 \
--use_chat_template = true
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|math_500|0|0 \
--use_chat_template = true
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks lighteval|gpqa:diamond|0|0 \
--use_chat_template = true
lighteval vllm \
--model_args lighteval_model_arguments.yaml \
--tasks extended|lcb:codegeneration \
--use_chat_template = true
Accuracy
Category |
Benchmark |
Qwen3 - 32B |
Qwen3 - 32B - FP8 - dynamic (this model) |
Recovery |
OpenLLM v1 |
MMLU (5 - shot) |
80.96 |
80.89 |
99.9% |
|
ARC Challenge (25 - shot) |
69.03 |
68.00 |
98.5% |
|
GSM - 8K (5 - shot, strict - match) |
87.64 |
88.32 |
100.8% |
|
Hellaswag (10 - shot) |
71.10 |
71.44 |
100.5% |
|
Winogrande (5 - shot) |
69.77 |
69.85 |
100.1% |
|
TruthfulQA (0 - shot, mc2) |
58.63 |
59.13 |
100.9% |
|
Average |
72.86 |
72.94 |
100.1% |
OpenLLM v2 |
MMLU - Pro (5 - shot) |
54.24 |
54.78 |
101.0% |
|
IFEval (0 - shot) |
86.23 |
86.23 |
100.0% |
|
BBH (3 - shot) |
44.29 |
43.70 |
98.7% |
|
Math - lvl - 5 (4 - shot) |
54.61 |
57.26 |
104.9% |
|
GPQA (0 - shot) |
5.53 |
5.46 |
--- |
|
MuSR (0 - shot) |
7.85 |
8.81 |
--- |
|
Average |
42.13 |
42.71 |
101.4% |
Multilingual |
MGSM (0 - shot) |
32.57 |
|
|
Reasoning (generation) |
AIME 2024 |
79.37 |
79.37 |
100.0% |
|
AIME 2025 |
71.77 |
70.42 |
98.1% |
|
GPQA diamond |
66.67 |
68.69 |
103.0% |
|
Math - lvl - 5 |
96.20 |
96.40 |
100.2% |
|
LiveCodeBench |
62.45 |
63.32 |
101.4% |
đ§ Technical Details
Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per - channel scheme, whereas activations are quantized with a symmetric dynamic per - token scheme. The [llm - compressor](https://github.com/vllm - project/llm - compressor) library is used for quantization.
đ License
The model is under the apache - 2.0 license.