đ Hebrew GPT Neo Small
A Hebrew text generation model based on EleutherAI's gpt - neo, offering unique capabilities for Hebrew text generation.
đ Quick Start
This is a Hebrew text generation model based on [EleutherAI's gpt - neo](https://github.com/EleutherAI/gpt - neo). Each model was trained on a TPUv3 - 8, which was made available via the TPU Research Cloud Program.
⨠Features
- Utilizes advanced architecture from EleutherAI's gpt - neo for Hebrew text generation.
- Trained on a variety of Hebrew datasets to ensure high - quality output.
đĻ Installation
The installation steps can be found in the Google Colab Notebook. You can access it [here](https://colab.research.google.com/github/Norod/hebrew - gpt_neo/blob/main/hebrew - gpt_neo - small/Norod78_hebrew_gpt_neo_small_Colab.ipynb).
đģ Usage Examples
Basic Usage
The following is a simple usage sample code:
!pip install tokenizers==0.10.2 transformers==4.6.0
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("Norod78/hebrew-gpt_neo-small")
model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-gpt_neo-small", pad_token_id=tokenizer.eos_token_id)
prompt_text = "×× × ×××× ×Š××§××× ××ĸ××××Ē"
max_len = 512
sample_output_num = 3
seed = 1000
import numpy as np
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()
print(f"device: {device}, n_gpu: {n_gpu}")
np.random.seed(seed)
torch.manual_seed(seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(seed)
model.to(device)
encoded_prompt = tokenizer.encode(
prompt_text, add_special_tokens=False, return_tensors="pt")
encoded_prompt = encoded_prompt.to(device)
if encoded_prompt.size()[-1] == 0:
input_ids = None
else:
input_ids = encoded_prompt
print("input_ids = " + str(input_ids))
if input_ids != None:
max_len += len(encoded_prompt[0])
if max_len > 2048:
max_len = 2048
print("Updated max_len = " + str(max_len))
stop_token = "<|endoftext|>"
new_lines = "\n\n\n"
sample_outputs = model.generate(
input_ids,
do_sample=True,
max_length=max_len,
top_k=50,
top_p=0.95,
num_return_sequences=sample_output_num
)
print(100 * '-' + "\n\t\tOutput\n" + 100 * '-')
for i, sample_output in enumerate(sample_outputs):
text = tokenizer.decode(sample_output, skip_special_tokens=True)
text = text[: text.find(stop_token) if stop_token else None]
text = text[: text.find(new_lines) if new_lines else None]
print("\n{}: {}".format(i, text))
print("\n" + 100 * '-')
đ Documentation
Datasets
- An assortment of various Hebrew corpuses - Available [here](https://mega.nz/folder/CodSSA4R#4INvMes - 56m_WUi7jQMbJQ).
- oscar / unshuffled_deduplicated_he - [Homepage](https://oscar - corpus.com) | Dataset Permalink. The Open Super - large Crawled ALMAnaCH coRpus is a huge multilingual corpus obtained by language classification and filtering of the Common Crawl corpus using the goclassy architecture.
- CC100 - Hebrew Dataset [Homepage](https://metatext.io/datasets/cc100 - hebrew). Created by Conneau & Wenzek et al. in 2020, this dataset is one of the 100 corpora of monolingual data that was processed from the January - December 2018 Commoncrawl snapshots from the CC - Net repository. The size of this corpus is 6.1G, in Hebrew language.
Training Config
The training configuration is available [here](https://github.com/Norod/hebrew - gpt_neo/tree/main/hebrew - gpt_neo - small/configs).
Google Colab Notebook
You can access the Google Colab Notebook [here](https://colab.research.google.com/github/Norod/hebrew - gpt_neo/blob/main/hebrew - gpt_neo - small/Norod78_hebrew_gpt_neo_small_Colab.ipynb).
đ License
This project is licensed under the MIT license.