Model Overview
Model Features
Model Capabilities
Use Cases
🚀 XGLM-2.9B
XGLM-2.9B is a multilingual autoregressive language model with 2.9 billion parameters. It was trained on a balanced corpus of diverse languages, totaling 500 billion sub-tokens. This model was introduced in the paper Few-shot Learning with Multilingual Language Models by Xi Victoria Lin*, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li* (*Equal Contribution). The original implementation can be found in this repository.
🚀 Quick Start
The provided information mainly focuses on the model's introduction, training data, and usage examples. To quickly start using the model, you can refer to the code example in the "💻 Usage Examples" section.
✨ Features
- Multilingual Capability: Supports a wide range of languages including English, Russian, Chinese, German, Spanish, French, Japanese, and many others.
- Large-scale Training: Trained on a corpus of 500 billion sub-tokens, enabling it to handle diverse language tasks effectively.
📦 Installation
No installation steps are provided in the original document, so this section is skipped.
💻 Usage Examples
Basic Usage
The following snippet shows how to evaluate our models (GPT-3 style, zero-shot) on the Choice of Plausible Alternatives (COPA) task, using examples in English, Chinese and Hindi.
import torch
import torch.nn.functional as F
from transformers import XGLMTokenizer, XGLMForCausalLM
tokenizer = XGLMTokenizer.from_pretrained("facebook/xglm-2.9B")
model = XGLMForCausalLM.from_pretrained("facebook/xglm-2.9B")
data_samples = {
'en': [
{
"premise": "I wanted to conserve energy.",
"choice1": "I swept the floor in the unoccupied room.",
"choice2": "I shut off the light in the unoccupied room.",
"question": "effect",
"label": "1"
},
{
"premise": "The flame on the candle went out.",
"choice1": "I blew on the wick.",
"choice2": "I put a match to the wick.",
"question": "cause",
"label": "0"
}
],
'zh': [
{
"premise": "我想节约能源。",
"choice1": "我在空着的房间里扫了地板。",
"choice2": "我把空房间里的灯关了。",
"question": "effect",
"label": "1"
},
{
"premise": "蜡烛上的火焰熄灭了。",
"choice1": "我吹灭了灯芯。",
"choice2": "我把一根火柴放在灯芯上。",
"question": "cause",
"label": "0"
}
],
'hi': [
{
"premise": "M te vle konsève enèji.",
"choice1": "Mwen te fin baleye chanm lib la.",
"choice2": "Mwen te femen limyè nan chanm lib la.",
"question": "effect",
"label": "1"
},
{
"premise": "Flam bouji a te etenn.",
"choice1": "Mwen te soufle bouji a.",
"choice2": "Mwen te limen mèch bouji a.",
"question": "cause",
"label": "0"
}
]
}
def get_logprobs(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
input_ids, output_ids = inputs["input_ids"], inputs["input_ids"][:, 1:]
outputs = model(**inputs, labels=input_ids)
logits = outputs.logits
logprobs = torch.gather(F.log_softmax(logits, dim=2), 2, output_ids.unsqueeze(2))
return logprobs
# Zero-shot evaluation for the Choice of Plausible Alternatives (COPA) task.
# A return value of 0 indicates that the first alternative is more plausible,
# while 1 indicates that the second alternative is more plausible.
def COPA_eval(prompt, alternative1, alternative2):
lprob1 = get_logprobs(prompt + "\n" + alternative1).sum()
lprob2 = get_logprobs(prompt + "\n" + alternative2).sum()
return 0 if lprob1 > lprob2 else 1
for lang in data_samples_long:
for idx, example in enumerate(data_samples_long[lang]):
predict = COPA_eval(example["premise"], example["choice1"], example["choice2"])
print(f'{lang}-{idx}', predict, example['label'])
# en-0 1 1
# en-1 0 0
# zh-0 1 1
# zh-1 0 0
# hi-0 1 1
# hi-1 0 0
Advanced Usage
No advanced usage examples are provided in the original document, so this part is skipped.
📚 Documentation
For intended usage of the model, please refer to the model card released by the XGLM-2.9B development team.
🔧 Technical Details
The training data statistics of XGLM-2.9B is shown in the table below.
Property | Details |
---|---|
Model Type | Multilingual autoregressive language model |
Training Data | Trained on a balanced corpus of a diverse set of languages totaling 500 billion sub-tokens |
ISO-639-1 | family | name | # tokens | ratio | ratio w/ lowRes upsampling |
---|---|---|---|---|---|
en | Indo-European | English | 803526736124 | 0.489906 | 0.3259 |
ru | Indo-European | Russian | 147791898098 | 0.0901079 | 0.0602 |
zh | Sino-Tibetan | Chinese | 132770494630 | 0.0809494 | 0.0483 |
de | Indo-European | German | 89223707856 | 0.0543992 | 0.0363 |
es | Indo-European | Spanish | 87303083105 | 0.0532282 | 0.0353 |
fr | Indo-European | French | 77419639775 | 0.0472023 | 0.0313 |
ja | Japonic | Japanese | 66054364513 | 0.040273 | 0.0269 |
it | Indo-European | Italian | 41930465338 | 0.0255648 | 0.0171 |
pt | Indo-European | Portuguese | 36586032444 | 0.0223063 | 0.0297 |
el | Indo-European | Greek (modern) | 28762166159 | 0.0175361 | 0.0233 |
ko | Koreanic | Korean | 20002244535 | 0.0121953 | 0.0811 |
fi | Uralic | Finnish | 16804309722 | 0.0102455 | 0.0681 |
id | Austronesian | Indonesian | 15423541953 | 0.00940365 | 0.0125 |
tr | Turkic | Turkish | 12413166065 | 0.00756824 | 0.0101 |
ar | Afro-Asiatic | Arabic | 12248607345 | 0.00746791 | 0.0099 |
vi | Austroasiatic | Vietnamese | 11199121869 | 0.00682804 | 0.0091 |
th | Tai–Kadai | Thai | 10842172807 | 0.00661041 | 0.044 |
bg | Indo-European | Bulgarian | 9703797869 | 0.00591635 | 0.0393 |
ca | Indo-European | Catalan | 7075834775 | 0.0043141 | 0.0287 |
hi | Indo-European | Hindi | 3448390110 | 0.00210246 | 0.014 |
et | Uralic | Estonian | 3286873851 | 0.00200399 | 0.0133 |
bn | Indo-European | Bengali, Bangla | 1627447450 | 0.000992245 | 0.0066 |
ta | Dravidian | Tamil | 1476973397 | 0.000900502 | 0.006 |
ur | Indo-European | Urdu | 1351891969 | 0.000824241 | 0.0055 |
sw | Niger–Congo | Swahili | 907516139 | 0.000553307 | 0.0037 |
te | Dravidian | Telugu | 689316485 | 0.000420272 | 0.0028 |
eu | Language isolate | Basque | 105304423 | 6.42035e-05 | 0.0043 |
my | Sino-Tibetan | Burmese | 101358331 | 6.17976e-05 | 0.003 |
ht | Creole | Haitian, Haitian Creole | 86584697 | 5.27902e-05 | 0.0035 |
qu | Quechuan | Quechua | 3236108 | 1.97304e-06 | 0.0001 |
📄 License
The model is released under the MIT license.

