Model Overview
Model Features
Model Capabilities
Use Cases
🚀 RedPajama-INCITE-7B-Chat
RedPajama-INCITE-7B-Chat is a language model developed by Together and leaders from the open - source AI community, including Ontocord.ai, ETH DS3Lab, AAI CERC, Université de Montréal, MILA - Québec AI Institute, Stanford Center for Research on Foundation Models (CRFM), Stanford Hazy Research research group, and LAION. It is fine - tuned on OASST1 and Dolly2 to enhance chatting ability.
🚀 Quick Start
Please note that the model requires transformers
version >= 4.25.1.
To prompt the chat model, use the following format:
<human>: [Instruction]
<bot>:
✨ Features
- Developed by a consortium of leading open - source AI entities.
- Fine - tuned on OASST1 and Dolly2 for better chatting performance.
- Available in base, instruction - tuned, and chat versions.
📦 Installation
The installation mainly involves ensuring the correct transformers
version and relevant dependencies for different inference scenarios.
GPU Inference
This requires a GPU with 16GB memory.
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
MIN_TRANSFORMERS_VERSION = '4.25.1'
# check transformers version
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
# init
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat", torch_dtype=torch.float16)
model = model.to('cuda:0')
# infer
prompt = "<human>: Who is Alan Turing?\n<bot>:"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str)
"""
Alan Mathison Turing (23 June 1912 7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher, mathematician, and theoretical biologist.
"""
GPU Inference in Int8
This requires a GPU with 12GB memory. To run inference with int8, please ensure you have installed accelerate and bitandbytes. You can install them with the following command:
pip install accelerate
pip install bitsandbytes
Then you can run inference with int8 as follows:
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
MIN_TRANSFORMERS_VERSION = '4.25.1'
# check transformers version
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
# init
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat", device_map='auto', torch_dtype=torch.float16, load_in_8bit=True)
# infer
prompt = "<human>: Who is Alan Turing?\n<bot>:"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str)
"""
Alan Mathison Turing (23 June 1912 – 7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher, and theoretical biologist.
"""
CPU Inference
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
MIN_TRANSFORMERS_VERSION = '4.25.1'
# check transformers version
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
# init
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat", torch_dtype=torch.bfloat16)
# infer
prompt = "<human>: Who is Alan Turing?\n<bot>:"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str)
"""
Alan Mathison Turing, OBE, FRS, (23 June 1912 – 7 June 1954) was an English computer scientist, mathematician, logician, cryptanalyst, philosopher, and theoretical biologist.
"""
Please note that since LayerNormKernelImpl
is not implemented in fp16 for CPU, we use bfloat16
for CPU inference.
💻 Usage Examples
Basic Usage
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
MIN_TRANSFORMERS_VERSION = '4.25.1'
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat", torch_dtype=torch.float16)
model = model.to('cuda:0')
prompt = "<human>: Who is Alan Turing?\n<bot>:"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str)
Advanced Usage
# Advanced scenario: Using int8 quantization for GPU inference with reduced memory usage
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
MIN_TRANSFORMERS_VERSION = '4.25.1'
assert transformers.__version__ >= MIN_TRANSFORMERS_VERSION, f'Please upgrade transformers to version {MIN_TRANSFORMERS_VERSION} or higher.'
tokenizer = AutoTokenizer.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat")
model = AutoModelForCausalLM.from_pretrained("togethercomputer/RedPajama-INCITE-7B-Chat", device_map='auto', torch_dtype=torch.float16, load_in_8bit=True)
prompt = "<human>: Who is Alan Turing?\n<bot>:"
inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
input_length = inputs.input_ids.shape[1]
outputs = model.generate(
**inputs, max_new_tokens=128, do_sample=True, temperature=0.7, top_p=0.7, top_k=50, return_dict_in_generate=True
)
token = outputs.sequences[0, input_length:]
output_str = tokenizer.decode(token)
print(output_str)
📚 Documentation
Model Details
Property | Details |
---|---|
Model Type | Language Model |
Developed by | Together Computer |
Language(s) | English |
License | Apache 2.0 |
Model Description | A 6.9B parameter pretrained language model |
Related Model Versions
- Base Model: RedPajama-INCITE-7B-Base
- Instruction - tuned Version: RedPajama-INCITE-7B-Instruct
- Chat Version: RedPajama-INCITE-7B-Chat
Training
Training Data: Please refer to togethercomputer/RedPajama-Data-1T Training Procedure:
- Hardware: 8 A100
- Optimizer: Adam
- Gradient Accumulations: 1
- Num of Tokens: 79M tokens
- Learning rate: 1e - 5
Uses
Direct Use
Excluded uses are described below.
Misuse, Malicious Use, and Out - of - Scope Use
It is the responsibility of the end - user to ensure that the model is used in a responsible and ethical manner.
Out - of - Scope Use
RedPajama-INCITE-7B-Chat
is a language model and may not perform well for other use cases outside of its intended scope. For example, it may not be suitable for use in safety - critical applications or for making decisions that have a significant impact on individuals or society. It is important to consider the limitations of the model and to only use it for its intended purpose.
Misuse and Malicious Use
RedPajama-INCITE-7B-Chat
is designed for language modeling. Misuse of the model, such as using it to engage in illegal or unethical activities, is strictly prohibited and goes against the principles of the project.
Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
- Generating fake news, misinformation, or propaganda
- Promoting hate speech, discrimination, or violence against individuals or groups
- Impersonating individuals or organizations without their consent
- Engaging in cyberbullying or harassment
- Defamatory content
- Spamming or scamming
- Sharing confidential or sensitive information without proper authorization
- Violating the terms of use of the model or the data used to train it
- Creating automated bots for malicious purposes such as spreading malware, phishing scams, or spamming
Limitations
RedPajama-INCITE-7B-Chat
, like other language models, has limitations that should be taken into consideration. For example, the model may not always provide accurate or relevant answers, particularly for questions that are complex, ambiguous, or outside of its training data. We therefore welcome contributions from individuals and organizations, and encourage collaboration towards creating a more robust and inclusive chatbot.
📄 License
This project is licensed under the Apache 2.0 license.
🔧 Technical Details
The model requires transformers
version >= 4.25.1. For CPU inference, since LayerNormKernelImpl
is not implemented in fp16 for CPU, we use bfloat16
. Different inference methods (GPU, GPU in Int8, CPU) have different hardware requirements and implementation details as shown in the installation section.
Community
Join us on Together Discord

