Model Overview
Model Features
Model Capabilities
Use Cases
đ LlongOrca 7B 16K - GGUF
This repository provides GGUF format model files for the LlongOrca 7B 16K model, offering various quantized versions for different use - cases.
đ Quick Start
This README offers comprehensive information about the LlongOrca 7B 16K model in GGUF format, including details about the model, quantisation methods, compatibility, and how to download and run the model.
⨠Features
- Multiple Quantization Options: Different quantization methods are available to balance between model size and quality.
- Broad Compatibility: Compatible with many popular clients, libraries, and UIs such as llama.cpp, text - generation - webui, etc.
- Extended Sequence Support: Capable of handling extended sequence lengths.
đĻ Installation
How to download GGUF files
Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
- LM Studio
- LoLLMS Web UI
- Faraday.dev
In text - generation - webui
Under Download Model, you can enter the model repo: TheBloke/LlongOrca - 7B - 16K - GGUF and below it, a specific filename to download, such as: llongorca - 7b - 16k.q4_K_M.gguf. Then click Download.
On the command line, including multiple files at once
I recommend using the huggingface - hub
Python library:
pip3 install huggingface - hub>=0.17.1
Then you can download any individual model file to the current directory, at high speed, with a command like this:
huggingface - cli download TheBloke/LlongOrca - 7B - 16K - GGUF llongorca - 7b - 16k.q4_K_M.gguf --local - dir. --local - dir - use - symlinks False
More advanced huggingface - cli download usage
You can also download multiple files at once with a pattern: ```shell huggingface - cli download TheBloke/LlongOrca - 7B - 16K - GGUF --local - dir. --local - dir - use - symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface - cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download - from - the - cli).To accelerate downloads on fast connections (1Gbit/s or higher), install hf_transfer
:
pip3 install hf_transfer
And set environment variable HF_HUB_ENABLE_HF_TRANSFER
to 1
:
HUGGINGFACE_HUB_ENABLE_HF_TRANSFER = 1 huggingface - cli download TheBloke/LlongOrca - 7B - 16K - GGUF llongorca - 7b - 16k.q4_K_M.gguf --local - dir. --local - dir - use - symlinks False
Windows CLI users: Use set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER = 1
before running the download command.
đģ Usage Examples
Basic Usage
Example llama.cpp
command
Make sure you are using llama.cpp
from commit d0cee0d36d5be95a0d9088b674dbb27354107221 or later.
./main -ngl 32 -m llongorca - 7b - 16k.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant"
Change -ngl 32
to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change -c 4096
to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.
If you want to have a chat - style conversation, replace the -p <PROMPT>
argument with -i -ins
For other parameters and how to use them, please refer to the llama.cpp documentation
Advanced Usage
How to run in text - generation - webui
Further instructions here: [text - generation - webui/docs/llama.cpp.md](https://github.com/oobabooga/text - generation - webui/blob/main/docs/llama.cpp.md).
How to run from Python code
You can use GGUF models from Python using the [llama - cpp - python](https://github.com/abetlen/llama - cpp - python) or ctransformers libraries.
How to load this model from Python using ctransformers
First install the package
# Base ctransformers with no GPU acceleration
pip install ctransformers>=0.2.24
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]>=0.2.24
# Or with ROCm GPU acceleration
CT_HIPBLAS = 1 pip install ctransformers>=0.2.24 --no - binary ctransformers
# Or with Metal GPU acceleration for macOS systems
CT_METAL = 1 pip install ctransformers
đ Documentation
About the Model
- Model Creator: [Open - Orca](https://huggingface.co/Open - Orca)
- Original Model: [LlongOrca 7B 16K](https://huggingface.co/Open - Orca/LlongOrca - 7B - 16k)
- Model Type: llama
- Pipeline Tag: text - generation
Prompt Template
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Repositories available
- [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - AWQ)
- [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GPTQ)
- [2, 3, 4, 5, 6 and 8 - bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF)
- [Open - Orca's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Open - Orca/LlongOrca - 7B - 16k)
Compatibility
These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit d0cee0d36d5be95a0d9088b674dbb27354107221
They are also compatible with many third - party UIs and libraries - please see the list at the top of this README.
Explanation of quantisation methods
Click to see details
The new methods available are:
- GGML_TYPE_Q2_K - "type - 1" 2 - bit quantization in super - blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
- GGML_TYPE_Q3_K - "type - 0" 3 - bit quantization in super - blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
- GGML_TYPE_Q4_K - "type - 1" 4 - bit quantization in super - blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
- GGML_TYPE_Q5_K - "type - 1" 5 - bit quantization. Same super - block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
- GGML_TYPE_Q6_K - "type - 0" 6 - bit quantization. Super - blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
Refer to the Provided Files table below to see what files use which methods, and how.
Provided files
Name | Quant method | Bits | Size | Max RAM required | Use case |
---|---|---|---|---|---|
[llongorca - 7b - 16k.Q2_K.gguf](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF/blob/main/llongorca - 7b - 16k.Q2_K.gguf) | Q2_K | 2 | 2.83 GB | 5.33 GB | smallest, significant quality loss - not recommended for most purposes |
[llongorca - 7b - 16k.Q3_K_S.gguf](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF/blob/main/llongorca - 7b - 16k.Q3_K_S.gguf) | Q3_K_S | 3 | 2.95 GB | 5.45 GB | very small, high quality loss |
[llongorca - 7b - 16k.Q3_K_M.gguf](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF/blob/main/llongorca - 7b - 16k.Q3_K_M.gguf) | Q3_K_M | 3 | 3.30 GB | 5.80 GB | very small, high quality loss |
[llongorca - 7b - 16k.Q3_K_L.gguf](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF/blob/main/llongorca - 7b - 16k.Q3_K_L.gguf) | Q3_K_L | 3 | 3.60 GB | 6.10 GB | small, substantial quality loss |
[llongorca - 7b - 16k.Q4_0.gguf](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF/blob/main/llongorca - 7b - 16k.Q4_0.gguf) | Q4_0 | 4 | 3.83 GB | 6.33 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
[llongorca - 7b - 16k.Q4_K_S.gguf](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF/blob/main/llongorca - 7b - 16k.Q4_K_S.gguf) | Q4_K_S | 4 | 3.86 GB | 6.36 GB | small, greater quality loss |
[llongorca - 7b - 16k.Q4_K_M.gguf](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF/blob/main/llongorca - 7b - 16k.Q4_K_M.gguf) | Q4_K_M | 4 | 4.08 GB | 6.58 GB | medium, balanced quality - recommended |
[llongorca - 7b - 16k.Q5_0.gguf](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF/blob/main/llongorca - 7b - 16k.Q5_0.gguf) | Q5_0 | 5 | 4.65 GB | 7.15 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
[llongorca - 7b - 16k.Q5_K_S.gguf](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF/blob/main/llongorca - 7b - 16k.Q5_K_S.gguf) | Q5_K_S | 5 | 4.65 GB | 7.15 GB | large, low quality loss - recommended |
[llongorca - 7b - 16k.Q5_K_M.gguf](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF/blob/main/llongorca - 7b - 16k.Q5_K_M.gguf) | Q5_K_M | 5 | 4.78 GB | 7.28 GB | large, very low quality loss - recommended |
[llongorca - 7b - 16k.Q6_K.gguf](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF/blob/main/llongorca - 7b - 16k.Q6_K.gguf) | Q6_K | 6 | 5.53 GB | 8.03 GB | very large, extremely low quality loss |
[llongorca - 7b - 16k.Q8_0.gguf](https://huggingface.co/TheBloke/LlongOrca - 7B - 16K - GGUF/blob/main/llongorca - 7b - 16k.Q8_0.gguf) | Q8_0 | 8 | 7.16 GB | 9.66 GB | very large, extremely low quality loss - not recommended |
Note: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
đ§ Technical Details
- Model Type: llama
- Training Data: Open - Orca/OpenOrca
đ License
The model is under the llama2 license.

