🚀 Multilingual Sarcasm Detector
The Multilingual Sarcasm Detector is a text classification model designed to detect sarcasm in news article titles. It is fine - tuned on [bert - base - multilingual - uncased](https://huggingface.co/bert - base - multilingual - uncased). The training data includes ready - made datasets from Kaggle and scraped data from various English, Dutch, and Italian newspapers.
Labels:
0 -> Not Sarcastic;
1 -> Sarcastic
✨ Features
Source Data
- Datasets:
- English language data: [Kaggle: News Headlines Dataset For Sarcasm Detection](https://www.kaggle.com/datasets/rmisra/news - headlines - dataset - for - sarcasm - detection).
- Dutch non - sarcastic data: [Kaggle: Dutch News Articles](https://www.kaggle.com/datasets/maxscheijen/dutch - news - articles)
- Scraped data:
Training Dataset
Codebase
- Git Repo: [Official repository](https://github.com/helinivan/multilingual - sarcasm - detector)
💻 Usage Examples
Basic Usage
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import string
def preprocess_data(text: str) -> str:
return text.lower().translate(str.maketrans("", "", string.punctuation)).strip()
MODEL_PATH = "helinivan/multilingual-sarcasm-detector"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH)
text = "CIA Realizes It's Been Using Black Highlighters All These Years."
tokenized_text = tokenizer([preprocess_data(text)], padding=True, truncation=True, max_length=256, return_tensors="pt")
output = model(**tokenized_text)
probs = output.logits.softmax(dim=-1).tolist()[0]
confidence = max(probs)
prediction = probs.index(confidence)
results = {"is_sarcastic": prediction, "confidence": confidence}
The output of the above code is:
{'is_sarcastic': 1, 'confidence': 0.9374828934669495}
📚 Documentation
Performance
Property |
Details |
Model Type |
Multilingual Sarcasm Detector |
Training Data |
Ready - made datasets from Kaggle and scraped data from English, Dutch, and Italian newspapers |
Performance Table
Model Name |
F1 |
Precision |
Recall |
Accuracy |
[helinivan/english - sarcasm - detector](https://huggingface.co/helinivan/english - sarcasm - detector) |
92.38 |
92.75 |
92.38 |
92.42 |
[helinivan/italian - sarcasm - detector](https://huggingface.co/helinivan/italian - sarcasm - detector) |
88.26 |
87.66 |
89.66 |
88.69 |
[helinivan/multilingual - sarcasm - detector](https://huggingface.co/helinivan/multilingual - sarcasm - detector) |
87.23 |
88.65 |
86.33 |
88.30 |
[helinivan/dutch - sarcasm - detector](https://huggingface.co/helinivan/dutch - sarcasm - detector) |
83.02 |
84.27 |
82.01 |
86.81 |